Esercizio 1

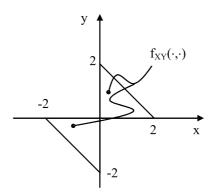
Su un canale di trasmissione binario simmetrico viene inviata una parola di 2 bit. Ogni bit assume valori in $\{0,1\}$, il valore 0 con frequenza doppia rispetto al valore 1, indipendentemente dal valore assunto dall'altro bit. La frequenza con cui si verifica un errore nella trasmissione di un singolo bit è dell'1%. Si vuole valutare la probabilità che si verifichino 2 errori in trasmissione, noto che è stata ricevuta una parola con tutti e 2 i bit uguali a 0.

- 1.1 Costruire un modello probabilistico (spazio di probabilità) per descrivere l'esperimento.
- 1.2 Calcolare la probabilità suddetta.

Esercizio 2

Si considerino le variabili casuali X e Y con densità di probabilità congiunta $f_{XY}(x,y)$ uniforme nel dominio in figura. Sia Z = g(Y) dove

$$g(\alpha) = \begin{cases} 2\alpha, & |\alpha| < 1 \\ 2, & |\alpha| \ge 1 \end{cases}$$



- 2.1 Determinare la densità di probabilità di Z condizionata all'evento in cui X>0: $f_{Z|X>0}(\beta|X>0)$.
- 2.2 Determinare la probabilità dell'evento $Z \geq 2$ condizionato all'evento in cui X > 0: $P(Z \geq 2|X>0)$.

Esercizio 3

Si consideri lo spazio di probabilità $(\Re, \mathcal{B}(\Re), P)$, dove $P : \Re \to [0, 1]$ è la misura di probabilità associata dalla funzione di densità uniforme in [0, 1].

Si consideri il processo a tempo discreto $\{X_n, n = 1, 2, ...\}$ su $(\Re, \mathcal{B}(\Re), P)$, così definito:

$$X_n(s) = \begin{cases} 0, & s \le 1/n \\ 1, & s > 1/n \end{cases}$$

- 3.1 Disegnare le realizzazioni del processo $\{X_n, n=1,2,\dots\}$ associate all'esito s=-1, s=0.5, e s=1.
- 3.2 Calcolare (a) la densità di probabilità delle ampiezze $f_X(\alpha; n)$ e (b) la funzione valore medio $\mu_X(n)$ del processo $\{X_n, n = 1, 2, ...\}$. Il processo $\{X_n, n = 1, 2, ...\}$ è stazionario in senso lato o in senso stretto?
- 3.3 Valutare se X_1 e X_2 sono: (a) indipendenti e (b) ortogonali.

Esercizio 4

Sia $\{X(t), t \in \Re\}$ un processo stocastico a tempo continuo, stazionario in senso lato, gaussiano, con densità spettrale di potenza triangolare nella banda [-4, 4], con valore medio nullo e potenza $P_X = 4$. Si consideri il processo $\{Y(t), t \in \Re\}$ definito da $Y(t) = X(t) + 2X(t - \frac{1}{8})$.

- 4.1 Determinare la densità di probabilità delle ampiezze $f_Y(\alpha;t)$ del processo $\{Y(t), t \in \Re\}$.
- 4.2 Dire, motivando la risposta, se il processo $\{Y(t), t \in \Re\}$ è stazionario (a) in senso lato e (b) in senso stretto.
- 4.3 Determinare la densità spettrale di potenza $S_Y(f)$ del processo $\{Y(t), t \in \Re\}$.

Esercizio 5

Si consideri il processo stocastico stazionario a tempo continuo $X(t) = \sum_{k=-\infty}^{+\infty} A_k p(t-2k)$, dove $\{A_k\}$ è una successione di variabili casuali i.i.d a valori equiprobabili in $\{-2,2\}$ e p(t) = rect(t-1/2).

- 5.1 Calcolare la funzione valore atteso $\mu_X(t)$ e la funzione di autocorrelazione $R_X(t_1, t_2)$ del processo $\{X(t), t \in \Re\}$. Verificare che il processo non è stazionario in senso lato.
- 5.2 Costruire a partire dal processo $\{X(t), t \in \Re\}$ un processo stazionario in senso lato.

Domanda di teoria

Descrivere in modo conciso e chiaro che cosa si intende per processo stocastico ergodico in media quadratica rispetto al valore medio. Dare un esempio di un processo stocastico che non è ergodico in media quadratica rispetto al valore medio.