
DESCRIBING FUNCTION METHOD 



LIMIT CYCLES 

Goals: 

Provide conditions to assess  

• existence 

• amplitude 

• stability 

of periodic solutions in a time-invariant Lur’e system subject to constant 

inputs 
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Remark:  

we assume that it is well-defined and unique for each U and  

 

 



DESCRIBING FUNCTION: DEFINITIONS 

Sinusoidal-input describing function 

• Sinusoidal input 

• Periodic solution of nonlinear system N  

Fourier series of function 

 



FOURIER SERIES 

Periodic function f(t) of period T, angular frequency  =2/T 



FOURIER SERIES 

Periodic function f(t) of period T, angular frequency  =2/T 



FOURIER SERIES 

Periodic function f(t) of period T, angular frequency  =2/T 



FOURIER SERIES 

Periodic function f(t) of period T, angular frequency  =2/T 



DESCRIBING FUNCTION: DEFINITIONS 

Sinusoidal-input describing function 

• Sinusoidal input 

• Periodic solution of nonlinear system N  

Fourier series of function 

 



DESCRIBING FUNCTION: DEFINITIONS 

Sinusoidal-input describing function 

• Sinusoidal input 

• Periodic solution of nonlinear system N  

Fourier series of function 

 



DESCRIBING FUNCTION: DEFINITIONS 

We consider nonlinear systems that are described by some input-

output characteristic function 

 

Memoryless nonlinearity:  

 

 

Nonlinearity with memory: 



DESCRIBING FUNCTION: DEFINITIONS 

We consider nonlinear systems that are described by some input-

output characteristic function 

 

Properties: 

• The describing function of N is independent of  

• If the input-output function N is a single value function (y = f(u)), 
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DESCRIBING FUNCTION: DEFINITIONS 

We consider nonlinear systems that are described by some input-

output characteristic function 

 

Properties: 

• The describing functions of N are independent of  

 

• If the input-output function N is a single value function (y = f(u)), 

then, both describing functions take values in R 

 



DESCRIBING FUNCTION: DEFINITIONS 

Proposition 

• The describing functions of two nonlinearities in parallel are given 

by the sum of the describing functions of the two nonlinearities 
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• Dual-input describing functions 
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DESCRIBING FUNCTION METHOD 

Does there exist a periodic solution associated with constant inputs U 

and Y°?  

Let us assume that there does exist and that it has period T 
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If there exists a periodic solution with period T, then 

 
 

Under the filtering assumption, we get 

 

By suitably setting the time origin  

 

 the input to N is the sum of a constant and  a fundamental 

harmonic contribution 

 need only the mean and first harmonic signal of the output of N    

 

 

 

 
 



HARMONIC BALANCE EQUATIONS 

balance of the  
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average of the output of N 
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balance of the  

average value 

If G(s) has zero poles, then               and the balance of the average 

value equation becomes:  
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first harmonic 
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HARMONIC BALANCE EQUATIONS 

Balance of the average value 
 

Balance of the first harmonic 
 

 3 equations between real numbers in  
 

Remarks:  

• If we know e(t), we can then determine all signals 

• Nonlinear algebraic equations 

 no simple conditions for existence and uniqueness of the 

solution, neither analytical formulas. Typically, numerical solutions 

are adopted  
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polar plot 

 

DF plot 
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EXAMPLE: N DESCRIBED BY INPUT-OUTPUT MAP 

Remark [robustness]: 

If the two plots intersect, then, they will keep intersecting even in 

presence of small perturbations of the two systems  

 

 

 

 

 

 

 

 

 

 Robustness of the limit cycle, in contrast with the linear systems   

    case 

 

 

 

DF plot 

 



PARTICULAR CASE: E0 << E1 

Harmonic balance equation 

 

 

 

 

 

 

 

 

 

 

sinusoidal-input describing function 



PARTICULAR CASE: E0 << E1 

Harmonic balance equation 

 

 

 

 

 

 

• pseudo-characteristic equation, since it is similar to the 

characteristic equation for a feedback linear system 

•                         plays the role of transfer function of the feedback 

loop 

 

 

 

 

sinusoidal-input describing function 



PARTICULAR CASE: E0 << E1 

Harmonic balance equation 

 

 

If N is described by an input-output map, the harmonic balance 

equation rewrites as 

 

 
 DF plot           
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PARTICULAR CASE: E0 << E1 

Harmonic balance equation 

 

 

 

Question: when does the condition E0 << E1 hold? 

choose U 

so that  

E0 = 0 



EXAMPLE 

G(s) with no poles equal to zero 

Data: 

  



TUNING OF THE MB/2 CONTROLLER PARAMETERS  
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Harmonic balance equation 

, E  

DF plot 
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Harmonic balance equation 

, E  

when B/M decreases,  

 increases and  

E decreases 

DF plot 



EXAMPLE 

Let B and M be fixed. Then   is derived as the angular frequency at 

which the polar plot crosses the horizontal axis crossing the 

imaginary axis at  

, E  

DF plot 
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EXAMPLE 

Remark:  

Heuristic approach, based on the filtering assumption, that depends 

in turn on the solution to the problem… 



PERIODIC SOLUTIONS IN A LUR’E SYSTEM 

If there exists a periodic solution with period T, then 

 

Correspondingly, we have 

 
 

where                         and 
 

Filtering assumption: 

Assume that   

 

 
 



Remark:  

Heuristic approach, based on the filtering assumption, that depends 

in turn on the solution to the problem… 

 a-posterior analytic assessment 

 validation via simulation 



LIMIT CYCLES 

Goals: 

Provide conditions to assess  

• existence 

• amplitude 

• stability 

of periodic solutions in a time-invariant Lur’e system subject to constant 

inputs 

 

 



STABILITY OF A PERIODIC SOLUTION 

What is it meant by stable periodic solution? 

A periodic solution is stable if, when the initial state is slightly perturbed, 

then the resulting evolution differs of a small amount from the periodic 

solution and tends to converge to it, with possibly a temporal mismatch 

(stability of the trajectory)  
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Remark:  

Depending on the fact that the limit cycle is  

• desired (switching control) 

• undesired (due to nonlinearity that were neglected at the control 

design stage) 

we would like it to be stable or unstable 

 

Assessing stability of a limit cycle is difficult and here we shall describe a 

heuristic method 

 

 



STABILITY OF A PERIODIC SOLUTION 

 

 

 

 

Assumption:  

• N described by an input-output map  

•   

Let (E*,*) be a solution to the harmonic balance equation  

 

 

with associated the periodic solution: e(t) = E*cos(*t) 

 

  

 

 



CAHEN-LOEB CRITERION 

 

 

 

 

 

  

 

 

Let (E*,*) be a solution to the harmonic balance equation  

 

and P the corresponding intersection point in the graphical interpretation 

of the equation.  

Let T be the vector tangent to the DF plot in P, pointing towards the 

direction where E increases.  

Let N be a vector normal to the polar plot of G(s), pointing towards the 

right-hand-side when following the polar plot in the direction of the 

increasing angular frequency.      
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polar plot 

The periodic solution associated with P is stable if  

T x N < 0 

 unstable otherwise, where “x” denotes the scalar product.  
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unstable 

stable 

DF plot 

polar plot 

The periodic solution associated with P is stable if  

T x N < 0 

 unstable otherwise, where “x” denotes the scalar product.  

 



DESCRIBING FUNCTION METHOD 

It is a heuristic method, since it is based on the filtering assumption 

 if the harmonic balance equation has a solution, then, a periodic 

solution with angular frequency and amplitude as given by the 

corresponding e(t) may be present 

 It might be the case that the predicted periodic solutions are not 

present, and also that there exist periodic solutions while the 

method does not predict any  

 

 

 


