DESCRIBING FUNCTION METHOD

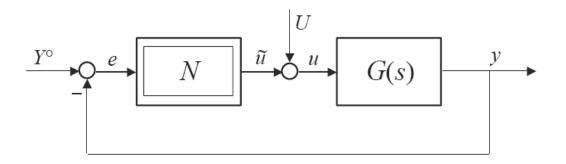
LIMIT CYCLES

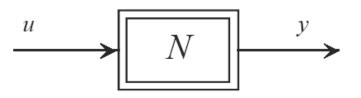
Goals:

Provide conditions to assess

- existence
- amplitude
- stability

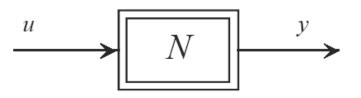
of periodic solutions in a time-invariant Lur'e system subject to constant inputs





Sinusoidal-input describing function

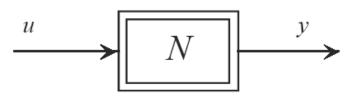
- Sinusoidal input $u(t) = U cos(\Omega t)$
- Periodic solution of nonlinear system $N = y_p(t; U, \Omega)$



Sinusoidal-input describing function

- Sinusoidal input $u(t) = U cos(\Omega t)$
- Periodic solution of nonlinear system $N = y_p(t; U, \Omega)$ Remark:

we assume that it is well-defined and unique for each U and Ω



Sinusoidal-input describing function

- Sinusoidal input $u(t) = U cos(\Omega t)$
- Periodic solution of nonlinear system $N = y_p(t; U, \Omega)$

Fourier series of function $y_p(t; U, \Omega)$

$$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(k\Omega t) + b_k \sin(k\Omega t)),$$

$$a_k = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(k\Omega t) dt, \ k = 0, 1, 2, \dots$$

$$b_k = \frac{2}{T} \int_{-T/2}^{T} f(t) \sin(k\Omega t) dt, \ k = 1, 2, \dots$$

$$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(k\Omega t) + b_k \sin(k\Omega t)),$$

$$a_k = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(k\Omega t) dt, \ k = 0, 1, 2, \dots$$

$$b_k = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(k\Omega t) dt, \ k = 1, 2, \dots$$

$$A_k := \sqrt{a_k^2 + b_k^2}$$

$$a_k \cos(k\Omega t) + b_k \sin(k\Omega t) = A_k \left(\frac{a_k}{A_k} \cos(k\Omega t) + \frac{b_k}{A_k} \sin(k\Omega t)\right)$$

$$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(k\Omega t) + b_k \sin(k\Omega t)),$$

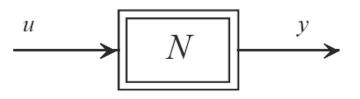
$$a_k = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(k\Omega t) dt, \ k = 0, 1, 2, \dots$$

$$b_k = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(k\Omega t) dt, \ k = 1, 2, \dots$$

$$A_k := \sqrt{a_k^2 + b_k^2}$$

$$a_k \cos(k\Omega t) + b_k \sin(k\Omega t) = A_k \left(\frac{a_k}{A_k}\cos(k\Omega t) + \frac{b_k}{A_k}\sin(k\Omega t)\right)$$

$$\cos(\phi_k) = \frac{a_k}{A_k}, \quad \sin(\phi_k) = -\frac{b_k}{A_k}$$
$$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} A_k \cos(k\Omega t + \phi_k)$$

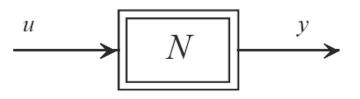


Sinusoidal-input describing function

- Sinusoidal input $u(t) = U cos(\Omega t)$
- Periodic solution of nonlinear system $N = y_p(t; U, \Omega)$

Fourier series of function $y_p(t; U, \Omega)$

$$y_p(t; U, \Omega) = Y_0(U,\Omega) + Y_1(U,\Omega) \cos(\Omega t + \varphi_1(U,\Omega)) + \sum_{k=2}^{\infty} Y_k(U,\Omega) \cos(k \Omega t + \varphi_k(U,\Omega))$$



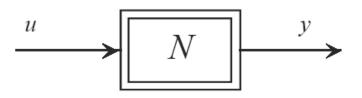
Sinusoidal-input describing function

- Sinusoidal input $u(t) = U cos(\Omega t)$
- Periodic solution of nonlinear system $N = y_p(t; U, \Omega)$

Fourier series of function $y_p(t; U, \Omega)$

$$y_p(t; U, \Omega) = Y_0(U,\Omega) + Y_1(U,\Omega) \cos(\Omega t + \varphi_1(U,\Omega)) + \sum_{k=2}^{\infty} Y_k(U,\Omega) \cos(k \Omega t + \varphi_k(U,\Omega))$$

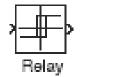
$$D(U, \Omega) := \frac{Y_1(U, \Omega)}{U} e^{j\varphi_1(U, \Omega)}$$

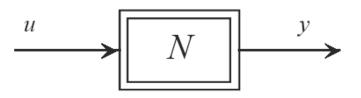


We consider nonlinear systems that are described by some inputoutput characteristic function

Memoryless nonlinearity:

Nonlinearity with memory:



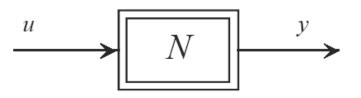


We consider nonlinear systems that are described by some inputoutput characteristic function

Properties:

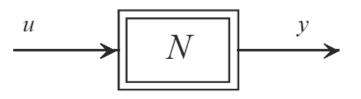
- The describing function of N is independent of Ω
- If the input-output function N is a single value function (y = f(u)), then, the describing function takes values in R

 $D(U,\Omega) \to D(U)$



Dual input describing functions:

- Input $u(t) = U_0 + U_1 \cos(\Omega t)$
- Periodic solution of nonlinear system $N = y_p(t; U_0, U_1, \Omega)$



Dual input describing functions:

Input • $u(t) = U_0 + U_1 \cos(\Omega t)$

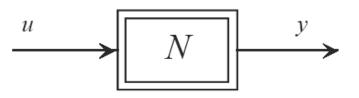
Periodic solution of nonlinear system $N = y_p(t; U_0, U_1, \Omega)$ ٠

Fourier series of function $y_p(t; U_0, U_1, \Omega)$

 $y_p(t; U_0, U_1, \Omega) = Y_0(U_0, U_1, \Omega) +$

+
$$Y_1(U_0, U_1, \Omega) cos(\Omega t + \varphi_1(U_0, U_1, \Omega)) +$$

+ $\sum_{k=2}^{\infty} Y_k(U_0, U_1, \Omega) cos(k \Omega t + \varphi_k(U_0, U_1, \Omega))$

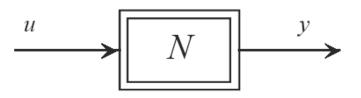


Dual input describing functions:

• Input
$$u(t) = U_0 + U_1 \cos(\Omega t)$$

• Periodic solution of nonlinear system $N = y_p(t; U_0, U_1, \Omega)$

$$\begin{split} D_0(U_0,\,U_1,\,\Omega) &:= \frac{Y_0(U_0,\,U_1,\,\Omega)}{U_0} \\ D_1(U_0,\,U_1,\,\Omega) &:= \frac{Y_1(U_0,\,U_1,\,\Omega)}{U_1} \ e^{j\phi_1(U_0,\,U_1,\Omega)} \end{split}$$



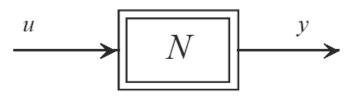
We consider nonlinear systems that are described by some inputoutput characteristic function

Properties:

• The describing functions of N are independent of Ω

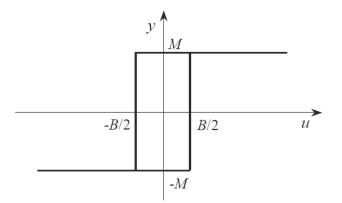
 $D_0(U_0, U_1, \Omega) \to D_0(U_0, U_1)$ $D_1(U_0, U_1, \Omega) \to D_1(U_0, U_1)$

• If the input-output function N is a single value function (y = f(u)), then, both describing functions take values in R



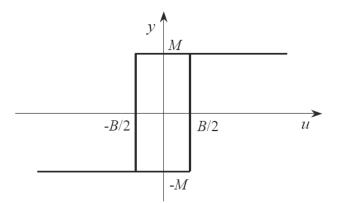
Proposition

• The describing functions of two nonlinearities in parallel are given by the sum of the describing functions of the two nonlinearities



• Sinusoidal-input describing function

$$D(U) = \frac{2M}{\pi U^2} \left(\sqrt{4 U^2 - B^2} - j B \right) \qquad U \ge B/2$$

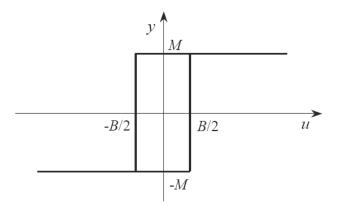


• Sinusoidal-input describing function

$$D(U) = \frac{2M}{\pi U^2} \left(\sqrt{4 U^2 - B^2} - j B \right) \qquad U \ge B/2$$

$$D(U) = \frac{M}{B} D^*(W) \quad , \quad W := \frac{U}{B} \ge 1/2$$

$$D^*(W) := \frac{2}{\pi} \frac{\sqrt{4 W^2 - 1} - j}{W^2} \qquad \longrightarrow \qquad -1$$



• Sinusoidal-input describing function

$$D(U) = \frac{2M}{\pi U^2} \left(\sqrt{4 U^2 - B^2} - j B \right) \qquad U \ge B/2$$

If
$$B = 0$$
,
$$D(U) = \frac{4M}{\pi U} , \qquad U > 0$$

• Dual-input describing functions $u(t) = U_0 + U_1 \cos(\Omega t)$

$$D_0(U_0, U_1) = \frac{M}{U_0} \left(g_0(\sigma) - g_0(\delta) \right)$$
$$D_1(U_0, U_1) = \frac{2M}{\pi U_1} \left(g_1(\sigma) + g_1(\delta) - j \frac{B}{U_1} \right)$$

where

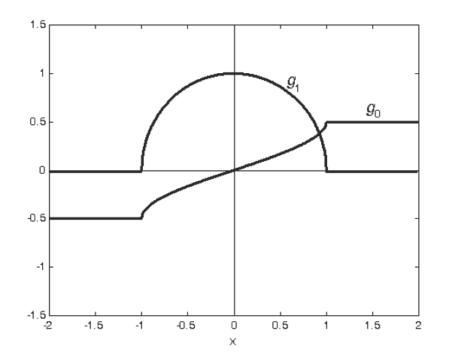
$$g_{0}(x) := \begin{cases} -1/2 & , & x < 1 \\ 1/\pi \ arcsin(x) & , & |x| \le 1 \\ 1/2 & , & x > 1 \end{cases} \quad g_{1}(x) := \begin{cases} \sqrt{1 - x^{2}} & , & |x| \le 1 \\ 0 & , & |x| > 1 \\ 0 & , & |x| > 1 \end{cases}$$

$$\sigma := a + r \quad \delta := a - r \qquad a := \frac{B}{2 \ U_{1}} \qquad r := \frac{U_{0}}{U_{1}}$$

$$U_{1} - |U_{0}| \ge \frac{B}{2}$$

• Dual-input describing functions $u(t) = U_0 + U_1 \cos(\Omega t)$

$$D_0(U_0, U_1) = \frac{M}{U_0} (g_0(\sigma) - g_0(\delta))$$
$$D_1(U_0, U_1) = \frac{2M}{\pi U_1} (g_1(\sigma) + g_1(\delta) - j\frac{B}{U_1})$$



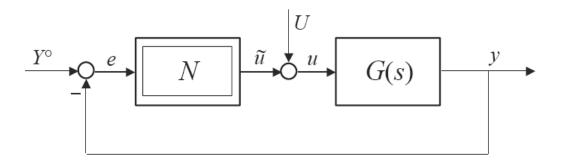
LIMIT CYCLES

Goals:

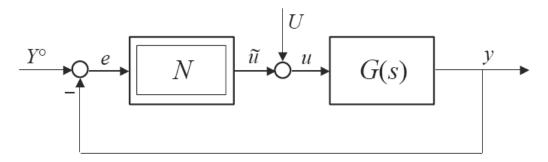
Provide conditions to assess

- existence
- amplitude
- stability

of periodic solutions in a time-invariant Lur'e system subject to constant inputs

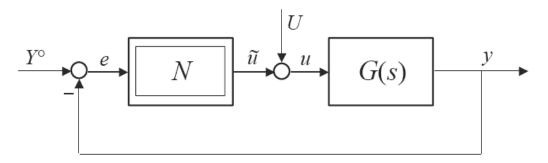


DESCRIBING FUNCTION METHOD



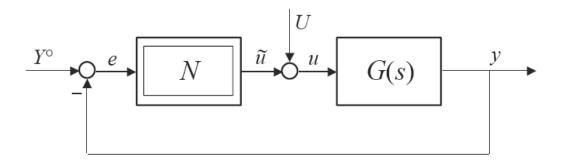
Does there exist a periodic solution associated with costant inputs U and Y°?

DESCRIBING FUNCTION METHOD

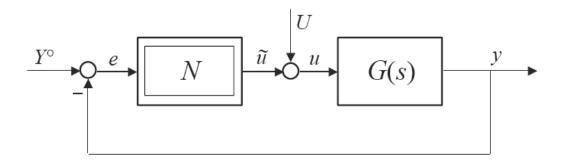


Does there exist a periodic solution associated with constant inputs U and Y°?

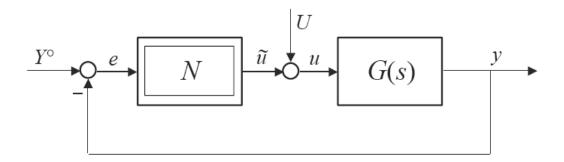
Let us assume that there does exist and that it has period T



If there exists a periodic solution with period T, then $u(t) = U_0 + U_1 \cos(\Omega t + \beta_1) + \sum_{k=2}^{\infty} U_k \cos(k \Omega t + \beta_k) \qquad \Omega := 2 \pi/T_1$



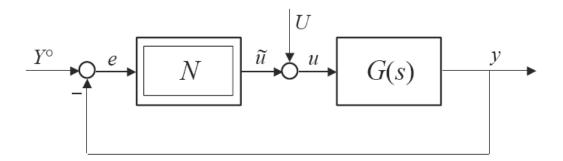
If there exists a periodic solution with period T, then $u(t) = U_0 + U_1 \cos(\Omega t + \beta_1) + \sum_{k=2}^{\infty} U_k \cos(k \Omega t + \beta_k) \qquad \Omega := 2 \pi/T;$ Correspondingly, we have $y(t) = G_0 U_0 + G_1 U_1 \cos(\Omega t + \beta_1 + \gamma_1) + \sum_{k=2}^{\infty} G_k U_k \cos(k \Omega t + \beta_k + \gamma_k)$ where $G_k := |G(jk\Omega)|$ and $\gamma_k := \angle G(jk\Omega)$



If there exists a periodic solution with period T, then $u(t) = U_0 + U_1 \cos(\Omega t + \beta_1) + \sum_{k=2}^{\infty} U_k \cos(k \Omega t + \beta_k) \qquad \Omega := 2 \pi/T;$ Correspondingly, we have $y(t) = G_0 U_0 + G_1 U_1 \cos(\Omega t + \beta_1 + \gamma_1) + \sum_{k=2}^{\infty} G_k U_k \cos(k \Omega t + \beta_k + \gamma_k)$ where $G_k := |G(jk\Omega)|$ and $\gamma_k := \angle G(jk\Omega)$

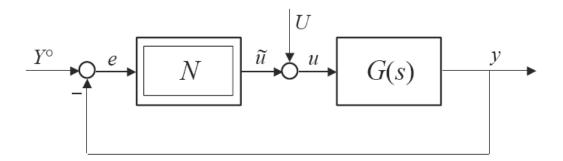
Filtering assumption:

Assume that $G_k U_k \ll G_1 U_1$, $\forall k \ge 2$



If there exists a periodic solution with period T, then $u(t) = U_0 + U_1 \cos(\Omega t + \beta_1) + \sum_{\substack{n \ge 0 \\ k = 2}}^{\infty} U_k \cos(k \Omega t + \beta_k) \qquad \Omega := 2 \pi/T_1$ Under the filtering assumption, we get

$$y(t) \approx G_0 U_0 + G_1 U_1 \cos(\Omega t + \beta_1 + \gamma_1)$$

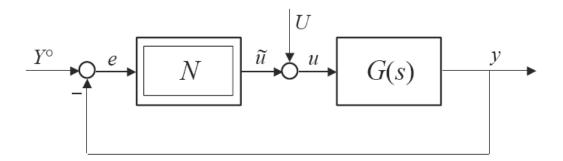


If there exists a periodic solution with period T, then $u(t) = U_0 + U_1 \cos(\Omega t + \beta_1) + \sum_{k=2}^{\infty} U_k \cos(k \Omega t + \beta_k) \qquad \Omega := 2 \pi/T_1$ Under the filtering assumption, we get

$$y(t) \approx G_0 U_0 + G_1 U_1 \cos(\Omega t + \beta_1 + \gamma_1)$$

By suitably setting the time origin

$$e(t) \approx Y^{\circ} - G_0 U_0 - G_1 U_1 \cos(\Omega t + \beta_1 + \gamma_1) \rightarrow E_0 + E_1 \cos(\Omega t)$$



If there exists a periodic solution with period T, then $u(t) = U_0 + U_1 \cos(\Omega t + \beta_1) + \sum_{k=2}^{\infty} U_k \cos(k \Omega t + \beta_k) \qquad \Omega := 2 \pi/T_2$

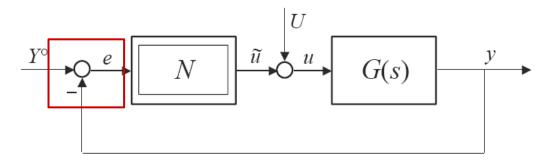
Under the filtering assumption, we get

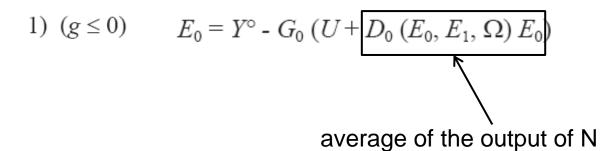
$$y(t) \approx G_0 U_0 + G_1 U_1 \cos(\Omega t + \beta_1 + \gamma_1)$$

By suitably setting the time origin

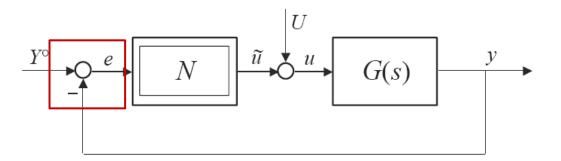
 $e(t) \approx Y^{\circ} - G_0 U_0 - G_1 U_1 \cos(\Omega t + \beta_1 + \gamma_1) \rightarrow E_0 + E_1 \cos(\Omega t)$

- → the input to N is the sum of a constant and a fundamental harmonic contribution
- \rightarrow need only the mean and first harmonic signal of the output of N





balance of the average value

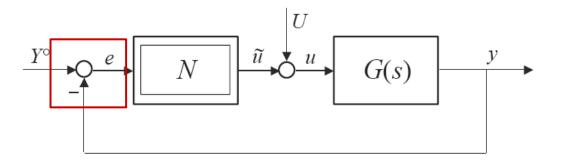


1) $(g \le 0)$ $E_0 = Y^\circ - G_0 (U + D_0 (E_0, E_1, \Omega) E_0)$

balance of the average value

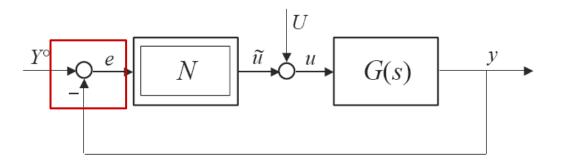
If G(s) has zero poles, then $G_0 \rightarrow \infty$ and the balance of the average value equation becomes:

1')
$$(g > 0)$$
 $U + D_0 (E_0, E_1, \Omega) E_0 = \frac{Y^\circ - E_0}{G_0} = 0$



1) $U + D_0 (E_0, E_1, \Omega) E_0 = \frac{Y^\circ - E_0}{G_0}$

balance of the average value



1) $U + D_0 (E_0, E_1, \Omega) E_0 = \frac{Y^\circ - E_0}{G_0}$

 $E_1 = -G(j\Omega) D_1(E_0, E_1, \Omega) E_1$

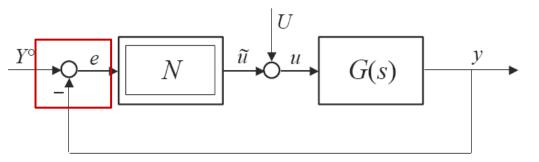
2)

balance of the average value

balance of the first harmonic

polar representation of the first harmonic

HARMONIC BALANCE EQUATIONS

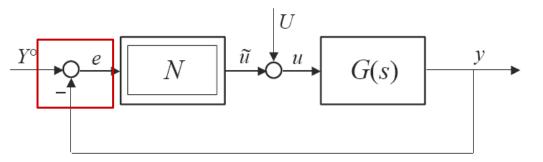


Balance of the average value $U + D_0 (E_0, E_1, \Omega) E_0 = \frac{Y^\circ - E_0}{G_0}$

Balance of the first harmonic

$$E_1 = -G(j\Omega) D_1(E_0, E_1, \Omega) E_1$$

HARMONIC BALANCE EQUATIONS



Balance of the average value

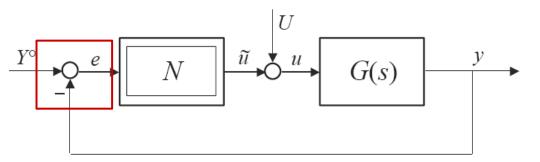
$$U + D_0 (E_0, E_1, \Omega) E_0 = \frac{Y^\circ - E_0}{G_0}$$

Balance of the first harmonic

$$E_1 = -G(j\Omega) D_1(E_0, E_1, \Omega) E_1$$

 \rightarrow 3 equations between real numbers in E_0, E_1, Ω

HARMONIC BALANCE EQUATIONS



Balance of the average value

$$U + D_0 (E_0, E_1, \Omega) E_0 = \frac{Y^\circ - E_0}{G_0}$$

Balance of the first harmonic

 $E_1 = -G(j\Omega) D_1(E_0, E_1, \Omega) E_1$

→ 3 equations between real numbers in E_0, E_1, Ω

Remarks:

- If we know *e(t)*, we can then determine all signals
- Nonlinear algebraic equations

 → no simple conditions for existence and uniqueness of the solution, neither analytical formulas. Typically, numerical solutions are adopted

$$U + D_0 (E_0, E_1) E_0 = \frac{Y^\circ - E_0}{G_0}$$
$$E_1 = -G(j\Omega) D_1(E_0, E_1) E_1$$

$$U + D_0 (E_0, E_1) E_0 = \frac{Y^\circ - E_0}{G_0}$$
$$E_1 = -G(j\Omega) D_1(E_0, E_1) E_1$$

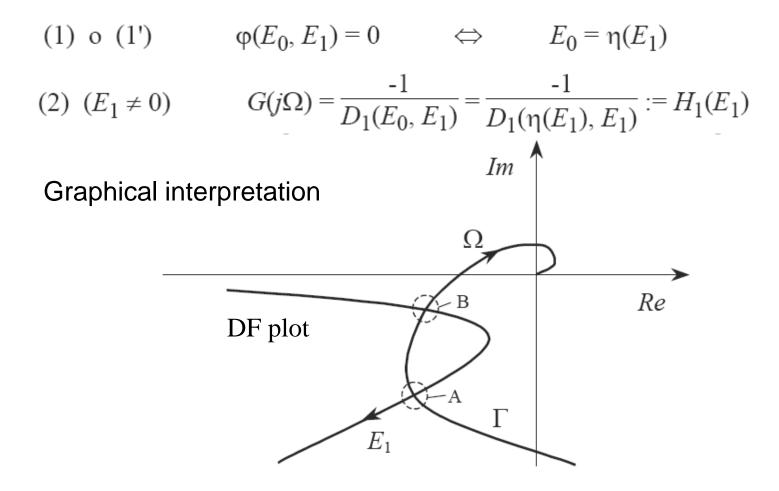
(1) o (1') $\phi(E_0, E_1) = 0 \quad \Leftrightarrow \quad E_0 = \eta(E_1)$

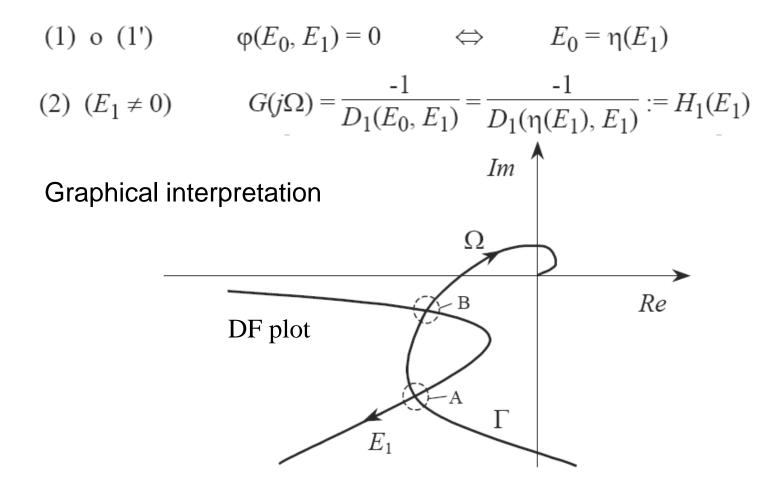
(2) $(E_1 \neq 0)$ $E_1 = -G(j\Omega) D_1(E_0, E_1) E_1$ $G(j\Omega) = \frac{-1}{D_1(E_0, E_1)} = \frac{-1}{D_1(\eta(E_1), E_1)} := H_1(E_1)$

$$U + D_0 (E_0, E_1) E_0 = \frac{Y^\circ - E_0}{G_0}$$
$$G(j\Omega) D_1(E_0, E_1) = -1 .$$

(1) o (1') $\phi(E_0, E_1) = 0 \quad \Leftrightarrow \quad E_0 = \eta(E_1)$

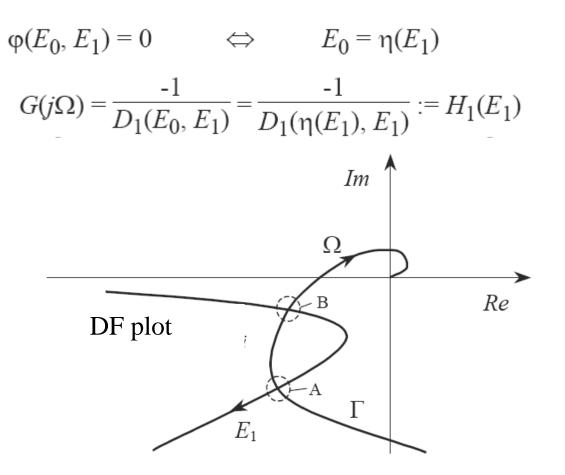
(2) $(E_1 \neq 0)$ $E_1 = -G(j\Omega) D_1(E_0, E_1) E_1$ $G(j\Omega) = \frac{-1}{D_1(E_0, E_1)} = \frac{-1}{D_1(\eta(E_1), E_1)} := H_1(E_1)$ Ψ Ψ polar plot DF plot Γ





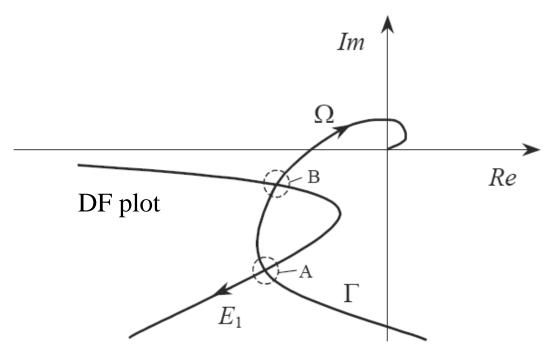
- Ω_A , E_{1A} , $E_{0A} = \eta(E_{1A}) \rightarrow e_A(t) = E_{0A} + E_{1A} \cos(\Omega_A t)$
- $\Omega_B, E_{1B}, E_{0B} = \eta(E_{1B}) \rightarrow e_B(t) = E_{0B} + E_{1B} \cos(\Omega_B t)$

$$U + D_0 (E_0, E_1) E_0 = \frac{Y^\circ - E_0}{G_0}$$
$$G(j\Omega) D_1(E_0, E_1) = -1 .$$



Remark [robustness]:

If the two plots intersect, then, they will keep intersecting even in presence of small perturbations of the two systems



→ Robustness of the limit cycle, in contrast with the linear systems case

$$E_0 \cong 0 \qquad \Rightarrow \qquad e(t) \cong E \cos(\Omega t)$$

Harmonic balance equation

$$E = -G(j\Omega) D(E,\Omega) E \qquad \Leftrightarrow \qquad G(j\Omega) = \frac{-1}{D(E,\Omega)}$$

sinusoidal-input describing function

$$E_0 \cong 0 \qquad \Rightarrow \qquad e(t) \cong E \cos(\Omega t)$$

Harmonic balance equation

$$E = -G(j\Omega) D(E,\Omega) E \qquad \Leftrightarrow \qquad G(j\Omega) = \frac{-1}{D(E,\Omega)}$$

sinusoidal-input describing function

 $1 + G(j\Omega)D(E,\Omega) = 0$

- pseudo-characteristic equation, since it is similar to the characteristic equation for a feedback linear system
- $G(j\Omega)D(E,\Omega)$ plays the role of transfer function of the feedback loop

PARTICULAR CASE: $E_0 \ll E_1$

$$E_0 \cong 0 \qquad \Rightarrow \qquad e(t) \cong E \cos(\Omega t)$$

Harmonic balance equation

$$E = -G(j\Omega) D(E,\Omega) E \qquad \Leftrightarrow \qquad G(j\Omega) = \frac{-1}{D(E,\Omega)}$$

If N is described by an input-output map, the harmonic balance equation rewrites as 1

$$G(j\Omega) = \frac{-1}{D(E)} := H(E)$$

$$\downarrow$$
DF plot

$$E_0 \cong 0 \qquad \Rightarrow \qquad e(t) \cong E \cos(\Omega t)$$

Harmonic balance equation

$$E = -G(j\Omega) D(E,\Omega) E \qquad \Leftrightarrow \qquad G(j\Omega) = \frac{-1}{D(E,\Omega)}$$

Question: when does the condition $E_0 \ll E_1$ hold?

$$E_0 \cong 0 \qquad \Rightarrow \qquad e(t) \cong E \cos(\Omega t)$$

Harmonic balance equation

$$E = -G(j\Omega) D(E,\Omega) E \qquad \Leftrightarrow \qquad G(j\Omega) = \frac{-1}{D(E,\Omega)}$$

Question: when does the condition $E_0 \ll E_1$ hold?

1)
$$(g \le 0)$$
 $E_0 = Y^\circ - G_0 (U + D_0(E_0, E_1, \Omega) E_0)$

$$E_0 = \frac{Y^\circ - G_0 U}{1 + G_0 D_0(E_0, E_1, \Omega)}$$

1')
$$(g > 0)$$
 $U + D_0(E_0, E_1, \Omega) E_0 = 0$

$$E_0 = \frac{-U}{D_0(E_0, E_1, \Omega)}$$

$$E_0 \cong 0 \qquad \Rightarrow \qquad e(t) \cong E \cos(\Omega t)$$

Harmonic balance equation

$$E = -G(j\Omega) D(E,\Omega) E \qquad \Leftrightarrow \qquad G(j\Omega) = \frac{-1}{D(E,\Omega)}$$

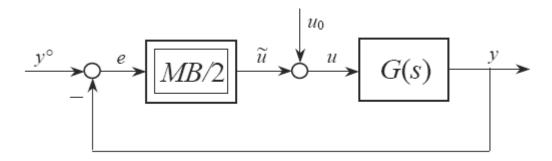
choose U

so that

 $E_0 = 0$

Question: when does the condition $E_0 << E_1$ hold?

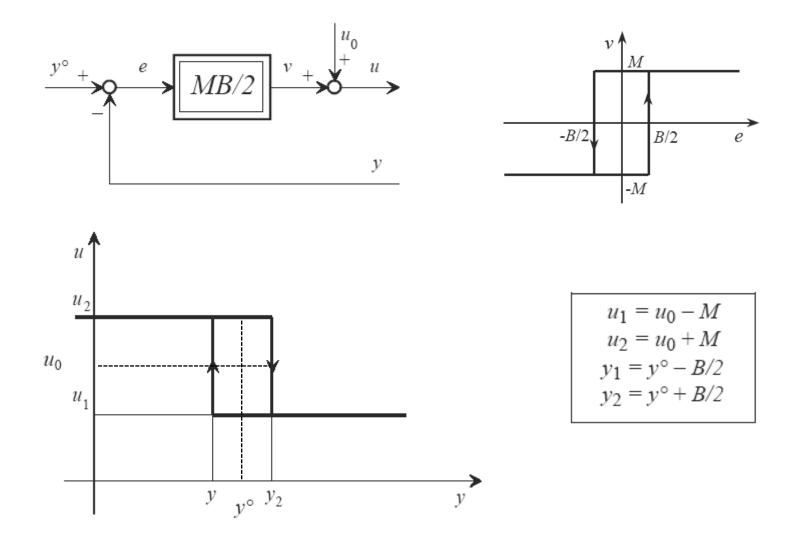
1)
$$(g \le 0)$$
 $E_0 = Y^\circ - G_0 (U + D_0(E_0, E_1, \Omega) E_0)$
 $E_0 = \frac{Y^\circ - G_0 U}{1 + G_0 D_0(E_0, E_1, \Omega)}$
1') $(g > 0)$ $U + D_0(E_0, E_1, \Omega) E_0 = 0$
 $E_0 = \frac{-U}{D_0(E_0, E_1, \Omega)}$

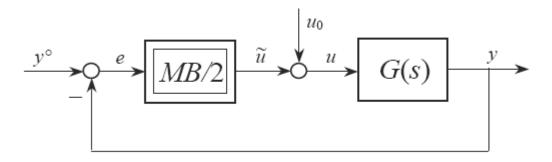


G(s) with no poles equal to zero

Data: y_{min} e y_{max}

TUNING OF THE MB/2 CONTROLLER PARAMETERS



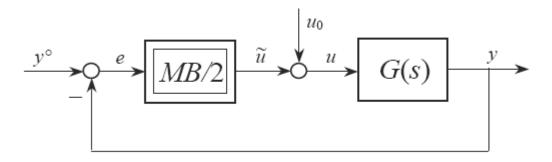


G(s) with no poles equal to zero

Data: $y_{min} e y_{max}$ Natural choice $y^{\circ} = (y_{min} + y_{max})/2$ $u_1 = u_0 - h_1$ $u_2 = u_0 + h_1$

$$u_1 = u_0 - M$$

 $u_2 = u_0 + M$
 $y_1 = y^\circ - B/2$
 $y_2 = y^\circ + B/2$



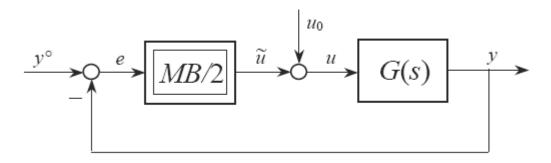
G(s) with no poles equal to zero

Data: y_{min} e y_{max} Natural choice

$$y^\circ = (y_{min} + y_{max})/2$$

$$u_0 = \frac{y^\circ}{G_0} \quad \Rightarrow \quad E_0 = 0$$

$$u_1 = u_0 - M$$
$$u_2 = u_0 + M$$
$$y_1 = y^\circ - B/2$$
$$y_2 = y^\circ + B/2$$



G(s) with no poles equal to zero

Data: y_{min} e y_{max} Natural choice y°

$$y^{\circ} = (y_{min} + y_{max})/2$$

$$u_0 = \frac{y^\circ}{G_0} \implies E_0 = 0$$

$$u_{1} = u_{0} - M$$

$$u_{2} = u_{0} + M$$

$$y_{1} = y^{\circ} - B/2$$

$$y_{2} = y^{\circ} + B/2$$

 $B : y_1 = y^\circ - B/2 \ge y_{min}$ $M: u_1 = u_0 - M \rightarrow y_\infty < y_1$

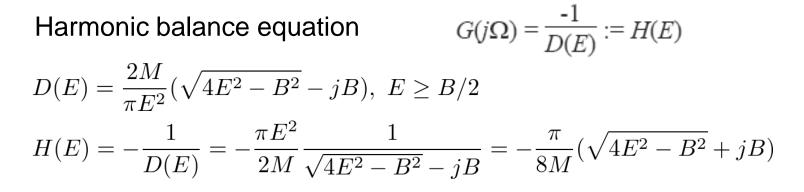
Harmonic balance equation

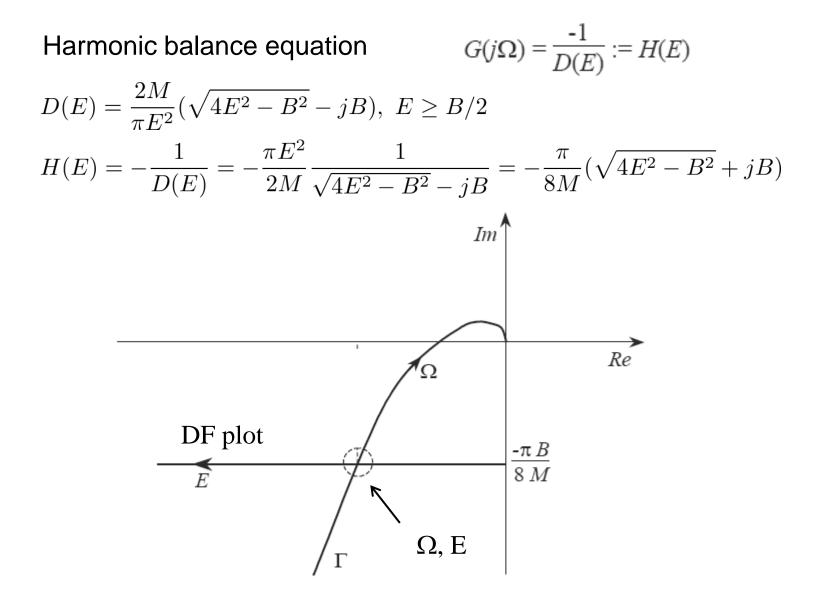
$$G(j\Omega) = \frac{-1}{D(E)} := H(E)$$

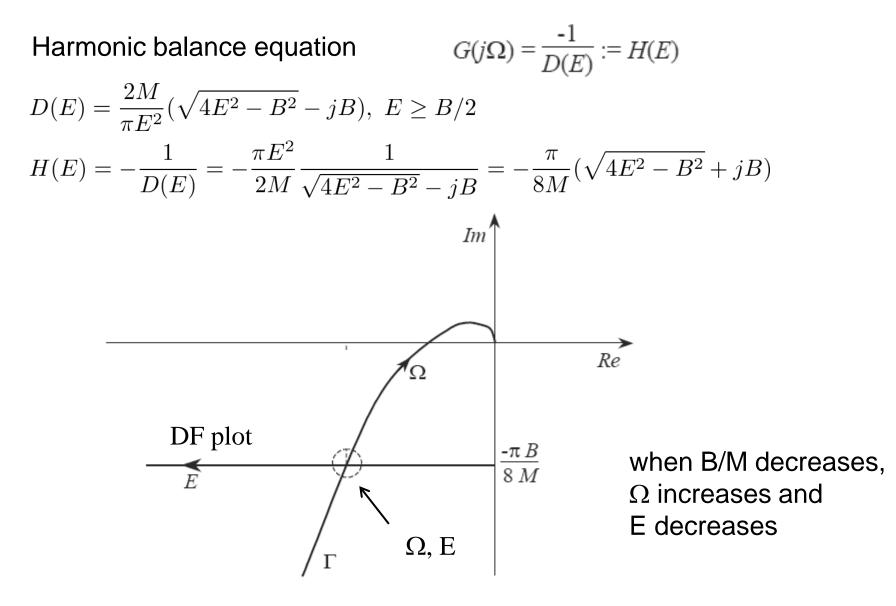
Harmonic balance equation

$$G(j\Omega) = \frac{-1}{D(E)} := H(E)$$

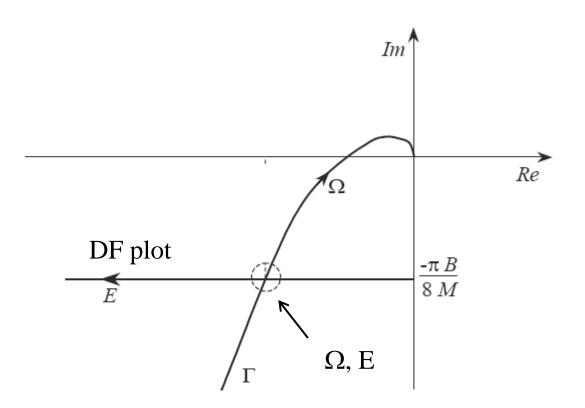
 $D(E) = \frac{2M}{\pi E^2} (\sqrt{4E^2 - B^2} - jB), \ E \ge B/2$





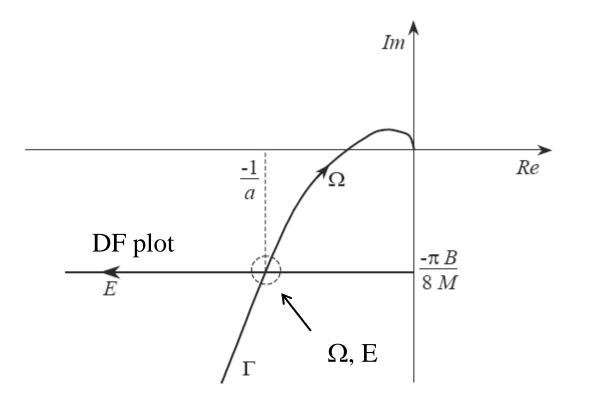


Let B and M be fixed. Then Ω is derived as the angular frequency at which the polar plot crosses the horizontal axis crossing the imaginary axis at $\frac{-\pi B}{8M}$



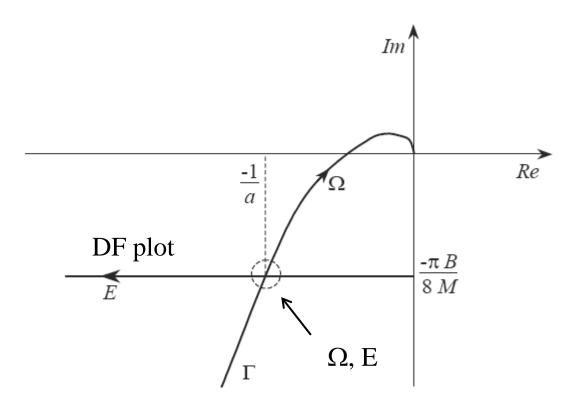
Let B and M be fixed. We can then determine E:

Let B and M be fixed. We can then determine E:



Let B and M be fixed. We can then determine E:

$$H(E) = -\frac{\pi}{8M}(\sqrt{4E^2 - B^2} + jB) \to -\frac{\pi}{8M}\sqrt{4E^2 - B^2} = -\frac{1}{a}$$

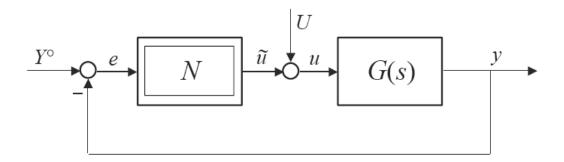


Let B and M be fixed. We can then determine E: $H(E) = -\frac{\pi}{8M}(\sqrt{4E^2 - B^2} + jB) \to -\frac{\pi}{8M}\sqrt{4E^2 - B^2} = -\frac{1}{a}$ $\Rightarrow E = \frac{1}{2}\sqrt{B^2 + (\frac{8M}{\pi a})^2}$ Im' $\frac{-1}{a}$ Re DF plot $\frac{-\pi B}{8 M}$ Ē Ω, Ε

Remark:

Heuristic approach, based on the filtering assumption, that depends in turn on the solution to the problem...

PERIODIC SOLUTIONS IN A LUR'E SYSTEM



If there exists a periodic solution with period T, then $u(t) = U_0 + U_1 \cos(\Omega t + \beta_1) + \sum_{k=2}^{\infty} U_k \cos(k \Omega t + \beta_k) \qquad \Omega := 2 \pi/T;$ Correspondingly, we have $y(t) = G_0 U_0 + G_1 U_1 \cos(\Omega t + \beta_1 + \gamma_1) + \sum_{k=2}^{\infty} G_k U_k \cos(k \Omega t + \beta_k + \gamma_k)$ where $G_k := |G(jk\Omega)|$ and $\gamma_k := \angle G(jk\Omega)$

Filtering assumption:

Assume that $G_k U_k \ll G_1 U_1$, $\forall k \ge 2$

Remark:

Heuristic approach, based on the filtering assumption, that depends in turn on the solution to the problem...

- \rightarrow a-posterior analytic assessment
- \rightarrow validation via simulation

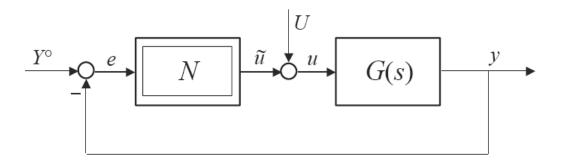
LIMIT CYCLES

Goals:

Provide conditions to assess

- existence
- amplitude
- stability

of periodic solutions in a time-invariant Lur'e system subject to constant inputs



STABILITY OF A PERIODIC SOLUTION

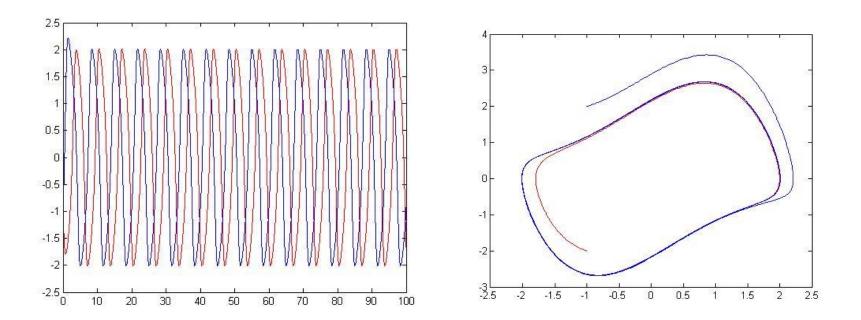
What is it meant by stable periodic solution?

A periodic solution is stable if, when the initial state is slightly perturbed, then the resulting evolution differs of a small amount from the periodic solution and tends to converge to it, with possibly a temporal mismatch (stability of the trajectory)

STABILITY OF A PERIODIC SOLUTION

What is it meant by stable periodic solution?

A periodic solution is stable if, when the initial state is slightly perturbed, then the resulting evolution differs of a small amount from the periodic solution and tends to converge to it, with possibly a temporal mismatch (stability of the trajectory)



Remark:

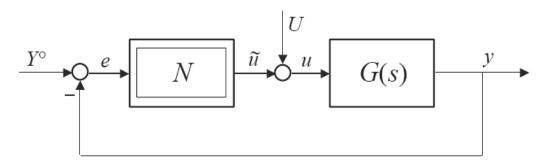
Depending on the fact that the limit cycle is

- desired (switching control)
- undesired (due to nonlinearity that were neglected at the control design stage)

we would like it to be stable or unstable

Assessing stability of a limit cycle is difficult and here we shall describe a heuristic method

STABILITY OF A PERIODIC SOLUTION



Assumption:

- *N* described by an input-output map
- $E_0 \cong 0 \implies e(t) \cong E \cos(\Omega t)$

Let (E^*, Ω^*) be a solution to the harmonic balance equation

$$G(j\Omega) = \frac{-1}{D(E)} := H(E)$$

with associated the periodic solution: $e(t) = E^* cos(\Omega^* t)$

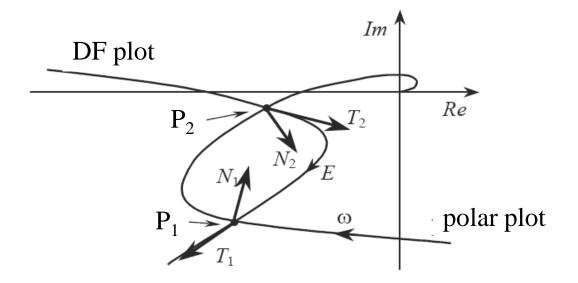
Let (E^*, Ω^*) be a solution to the harmonic balance equation

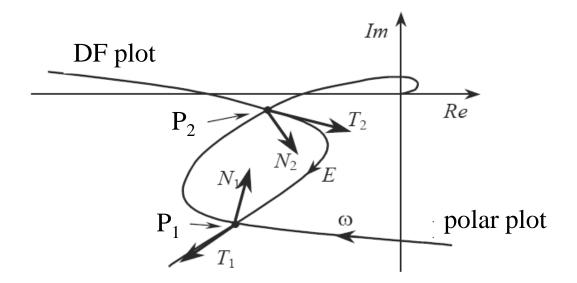
$$G(j\Omega) = \frac{-1}{D(E)} := H(E)$$

and P the corresponding intersection point in the graphical interpretation of the equation.

Let **T** be the vector tangent to the DF plot in P, pointing towards the direction where E increases.

Let **N** be a vector normal to the polar plot of G(s), pointing towards the right-hand-side when following the polar plot in the direction of the increasing angular frequency.

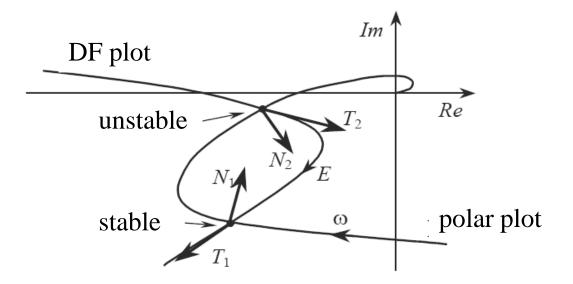




The periodic solution associated with P is stable if

$T \times N < 0$

unstable otherwise, where "x" denotes the scalar product.



The periodic solution associated with P is stable if

$T \times N < 0$

unstable otherwise, where "x" denotes the scalar product.

DESCRIBING FUNCTION METHOD

It is a <u>heuristic method</u>, since it is based on the filtering assumption

- → if the harmonic balance equation has a solution, then, a periodic solution with angular frequency and amplitude as given by the corresponding e(t) may be present
- → It might be the case that the predicted periodic solutions are not present, and also that there exist periodic solutions while the method does not predict any