1. Consider the following graph representing a hybrid automaton H

1.1 Define the components $H = (Q, X, f, \text{Init}, \text{Dom}, E, G, R)$ of the hybrid automaton

1.2 Verify if H is blocking/non-blocking, deterministic/non-deterministic, Zeno/non-Zeno. Provide a clear justification of your answers.

2. Consider the 2-dimensional switched linear system

\[\dot{x} = A_\sigma x \]

where the switching signal

\[\sigma : [0, \infty) \rightarrow \{1, 2\} \]

decides which of the matrices A_1 and A_2 is active at each time t.

2.1 Describe necessary and/or sufficient conditions for the equilibrium $x=0$ to be a globally uniformly asymptotically stable (GUAS) equilibrium of the switched linear system.

2.2 Provide an example of matrices A_1 and A_2 such that the $x=0$ equilibrium is GUAS.
3. Consider the linear system of order 3 with transfer function

\[G(s) = \frac{10(s + 10)}{(s + 1)(s^2 + 2s + 10)} \]

where only the output \(y\) is available as a measurement.

Design an output feedback variable structure controller for the regulation of the output \(y\) to some set-point \(y^*\), while preserving the complex eigenvalues of the system in the sliding mode dynamics.

4. Consider the Lur’e system in the figure below

\[\varphi(\cdot) \]

where

i) \(\varphi(\cdot) \) is a static nonlinearity in the sector \([-k, k]\), with \(k > 0 \)

ii) \(F(s) \) is the transfer function of a first order SISO system and is given by

\[F(s) = \frac{2500}{(s + 5)(s + 50)} \]

4.1 define the notion of \(L_2 \)-stability for the operator \(H \) with input \(u \) and output \(y \) and discuss its connection with the weakly boundedness of \(H \)

4.2 using the small gain theorem and the circle criterion, estimate the maximum value of \(k > 0 \) such that the operator \(H \) with input \(u \) and output \(y \) is \(L_2 \)-stable with finite gain.
4.3 what about the answer to point 4.2 in the case when function $\varphi(\cdot)$ is known and given by the saturation function plotted below?

![Saturation function diagram](image)

5. Consider the time-varying Lur'e system in the figure below

![Time-varying Lur'e system](image)

where $\varphi(\cdot,t)$ is a time-varying nonlinearity in the sector $[0, k]$, $k>0$, whereas $G(s)$ is the transfer function of a SISO reachable and observable linear system.

Provide the statements of necessary and/or sufficient conditions for its absolute stability.

6. Given the nonlinear regular SISO system of order $n=2$ described by

$$S : \begin{cases} \dot{x} = a(x) + b(x)u \\ y = c(x) \end{cases}$$

Suppose that the relative degree of S in $x^* = 0$ is $r=2$.

Explain in a brief and clear way how to construct a (local) static state feedback linearization that sets the poles of the closed loop system both equal to -1.