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STABILITY OF CONTINUOUS SYSTEMS
x(r) = f(x(1))
with f: R — R" globally Lipschitz continuous

Definition (equilibrium):
X, € R" for which f(x,)=0



Definition (stable equilibrium):
Ve >0,36 >0 ||xg—xe|| < 8 = |

[Vl = /34934402

>

Graphically: 2 ¢

x(1)

— Xel| < €,Yt >0

\ execution starting
from x(0)=x,

/V perturbed motion

.
>

{

equilibrium motion

small perturbations lead to small changes in behavior




Definition (asymptotically stable equilibrium):
Ve > 0,38 > 0: [xg—xe| < 8 — ||x(¢) —xe|| < €,V >0

and & can be chosen so that lim;—,c0(x(¢) —x¢) =0

/V perturbed motion
:.'." “:,: »,\. "“‘: ‘._“'. ‘.’.‘: .‘\'.. ‘j: t
/ equilibrium motion

&1

Graphically: 2 ¢

>

Y

small perturbations lead to small changes in behavior
and are re-absorbed, in the long run




EXAMPLE: PENDULUM

x1=206
Xy =86
6 | X1 = X2
. o
X9 —7 sin(x ) — X2

friction
coefficient (a)



@ EXAMPLE: PENDULUM

x; =20

xy = 6
O 2

.7{?1:.')62

. g . o
=7 sin(xp) — X2

Xp = [ g unstable equilibrium




EXAMPLE: PENDULUM

x; =20
o =0
X] = X2

. g .. %
=7 sin(xp) — X2

Xp = [ 0 ] as. stable equilibrium




EXAMPLE: PENDULUM




Let X, be asymptotically stable.

Definition (domain of attraction):
The domain of attraction of x, Is the set of x, such that

limy oo {x (1) — x¢) = O

execution starting
from x(0)=x,

Definition (globally asymptotically stable equilibrium):

X, IS globally asymptotically stable (GAS) if its domain of
attraction is the whole state space R"
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EXAMPLE: PENDULUM

x; =20
X =06
.7{?1:.')62

. g . o
=7 sin(xp) — X2

Xp = [ 8 ] as. stable equilibrium

small perturbations are
absorbed, not all
perturbations - not GAS



Let X, be asymptotically stable.

Definition (exponential stability):
X, IS exponentially stable if 4 a, o, B >0 such that

%0 —xell < & = |Ix(t) —xe|| < etllxg —xelle™P*, v > 0



STABILITY OF CONTINUOUS SYSTEMS
i(r) = f(x(2))
with f: R — R" globally Lipschitz continuous
Definition (equilibrium):

X, € R" for which f(x,)=0

Without loss of generality we suppose that

Xe =0

If not, then z := x -x, — dz/dt = g(2), 9(z) := f(z+x,) (g(0) = 0)




STABILITY OF CONTINUOUS SYSTEMS

(1) = flx(2),  f(0)=0

with f: R — R" globally Lipschitz continuous

How to prove stability?
find a function V: ®" — R such that

V(0) =0 and V(x) >0, forall x # 0
V(X) is decreasing along the executions of the system

V(x) =3
V(X) =2

X(t)



STABILITY OF CONTINUOUS SYSTEMS

behavior of V along the
execution x(t): V(t): = V(x(t))

1;

A = o

y
M=
]

candidate function V(x)

execution x(t)

Advantage with respect to exhaustive check of all executions?



STABILITY OF CONTINUOUS SYSTEMS

(=160, fO=0

with f: " — R globally Lipschitz continuous f(x) = £()

| Jn (x) 1

V: R" — R continuously differentiable (C*) function

Rate of change of V along the execution of the ODE system:

Loy dvix(@) 9V, GOV o dV |
V=g = Lot = Lo =) /W
(Lie derivative of V with respect to f) %_Z = [3% 3—; s 3}’;]

gradient vector




STABILITY OF CONTINUOUS SYSTEMS

(=160, fO=0

with f: " — R globally Lipschitz continuous f(x) = £()

| Jn (x) 1

V: R" — R continuously differentiable (C*) function

Rate of change of V along the execution of the ODE system:

.o dV(x(t)) ¢ av_,‘_ oV -~ dV, |
Vix) = a7 — 21 a—xixz — Zl a—xi.ﬁ(i) = g(ﬁf) f(x)
[(— = N
(Lie derivative of V with respect to f) %_Z — [3% 3—; ve 3}’;]

gradient vector

No need to solve the ODE for evaluating if V(x) decreases
along the executions of the system




LYAPUNOV STABILITY

Theorem (Lyapunov stability Theorem):

Let x, = 0 be an equilibrium for the system and DC R" an open
set containing x, = 0.

If V:D — Ris a C! function such that

V({0)=0

V positive definite on D
Vix) >0,¥Vxe D\ {0}
Vix) <0,VxeD V non increasing along

system executions in D
Then, x, Is stable. (negative semidefinite)



EXAMPLE: PENDULUM

x; =20
Xy =0
0 | X1 =Xx2
. ] ( ) O
X ——=SIn(x — —X
2 [ L m 2
friction 0
coefficient (a) Xe = 0

1
Vi(x) :=mgl(1 —cos(x]))+ me%lz >0  energy function

X1

V(x) = [mglsin(x;) mi?x,] - { I

] = —al’x3 <0
X, Stable



LYAPUNOV STABILITY

Theorem (Lyapunov stability Theorem):

Let x, = 0 be an equilibrium for the system and DC R" an open
set containing x, = 0.

If V. D — R is a C* function such that
V({0)=0
Vix) >0,¥Vxe D\ {0}
Vix) <0,¥xeD
Then, x, Is stable.
If it holds also that
V({x) <0,Vxe D\ {0}
Then, x, Is asymptotically stable (AS).



LYAPUNOV STABILITY

Theorem (Lyapunov stability Theorem):

Let x, = 0 be an equilibrium for the system and DC R" an open
set containing x, = 0.

If V:D — Ris a C! function such that
V({0)=0
Vix) >0,¥Vxe D\ {0}
Vix) <0,¥xeD

Then, x, Is stable.

La Salle Invariance principle:

If {xeR":V(x)=0}ND does not contain any trajectories of the

system besides x(f) =0, ¢t > 0, then, X, is asymptotically stable



EXAMPLE: PENDULUM

x; =20
Xy =0
0 | X1 =Xx2
. . ( ) 94
X ——=SIn(x — —X
2 [ L m 2
friction 0
coefficient (a) Ye =1 ¢

1
Vi(x) :=mgl(1 —cos(x]))+ me%lz >0  energy function

V(x) = [mglsin(x mi?x,| - Xl = —ol’x3 <0
1 2 X 2)

X, asymptotically stable (not globally) by La Salle Invariance Principle
restricted to D that does not include the other equilibrium.



LYAPUNOV GAS THEOREM

Theorem (Barbashin-Krasovski Theorem):
Let X, = 0 be an equilibrium for the system.

If V: " — R is a C! function such that

V(0)=0 V positive definite on R"
V(x) >0,Vx e R"\ {0}
Vix) <0,Vxe R\ {0}

V decreasing along
system executions in R"

(negative definite)

lim V(x)=oco V radially unbounded

1|0

Then, x, Is globally asymptotically stable (GAS).

Remark: if V(x) <0,Vx € R" one may show GAS via La Salle



STABILITY OF LINEAR CONTINUOUS SYSTEMS
X(t) = Ax(t)

* X, = 0is an equilibrium for the system
x(t) = eMx(0),1 >0

A0

e the elements of matrix e are linear combinations of
eMA Mt tkeMAt where A(A) is an eigenvalue of A



STABILITY OF LINEAR CONTINUOUS SYSTEMS
X(t) = Ax(t)

X, = 0 Is an equilibrium for the system
x(t) = eMx(0),1 >0

A0

X, =0 Is asymptotically stable if and only if A is Hurwitz (all
eigenvalues with real part <0)

asymptotic stability = GAS



STABILITY OF LINEAR CONTINUOUS SYSTEMS
X(t) = Ax(t)
X, = 0 Is an equilibrium for the system
x(t) = eMx(0),1 >0

A0

X, =0 Is asymptotically stable if and only if A is Hurwitz (all
eigenvalues with real part <0)

asymptotic stability = GAS

Alternative characterization...



STABILITY OF LINEAR CONTINUOUS SYSTEMS

X(t) = Ax(t)

Theorem (necessary and sufficient condition):

The equilibrium point x, =0 is asymptotically stable if and only
if for all matrices Q = QT positive definite (Q>0) the

ATP+PA = -Q

has a unique solution P=P7>0.

Remarks:

Lyapunov equation

Q positive definite (Q>0) iff x"Qx >0 for all x # 0
Q positive semidefinite (Q>0) iff x"Qx > 0 for all x and

xTQx=0forsomex=#0



STABILITY OF LINEAR CONTINUOUS SYSTEMS
X(t) = Ax(t)

Theorem (necessary and sufficient condition):

The equilibrium point x, =0 is asymptotically stable if and only
if for all matrices Q = QT positive definite (Q>0) the

ATP+PA =-Q Lyapunov equation

has a unique solution P=PT>0.
Proof.
(if) V(x) =xT P x is a Lyapunov function
V(x) =z Px+x! Pi
—xT(ATP+PAx = —xTQx <0,¥x#£0



STABILITY OF LINEAR CONTINUOUS SYSTEMS

X(t) = Ax(t)

Theorem (necessary and sufficient condition):

The equilibrium point x, =0 is asymptotically stable if and only
if for all matrices Q = QT positive definite (Q>0) the

ATP+PA = -Q

has a unique solution P=PT>0.

Proof.

%0 4T
(only if) Consider P = /0 et 10 dr

Lyapunov equation

.00 Jos! T
ATP 1 PA= / AT A oM ar + / ¢t 10N Adt

= / —eATerAfdt



STABILITY OF LINEAR CONTINUOUS SYSTEMS
X(t) = Ax(t)

Theorem (necessary and sufficient condition):

The equilibrium point x, =0 is asymptotically stable if and only
if for all matrices Q = QT positive definite (Q>0) the

ATP+PA = -Q Lyapunov equation

has a unique solution P=PT>0.

Proof.
%0 4T
(only if) Consider P = /0 et 10 dr

P = PT and P>0 easy to show
P unique can be proven by contradiction



STABILITY OF LINEAR CONTINUOUS SYSTEMS
X(t) = Ax(t)

Remarks: for a linear system

e existence of a (quadratic) Lyapunov function V(x) =x" P x is a
necessary and sufficient condition for asymptotic stability

e itis easy to compute a Lyapunov function since the Lyapunov
equation

ATP+PA = -Q

IS a linear algebraic equation



STABILITY OF LINEAR CONTINUOUS SYSTEMS
X(t) = Ax(t)

Theorem (exponential stability):

Let the equilibrium point x, = 0 be asymptotically stable. Then,
the rate of convergence to x, = 0 is exponential:

Ie(t)|| < e ||xg[, £ > 0

for all x(0) = x, € R", where A, € (0, min; |Re{A,(A)}|) and pn >0
IS an appropriate constant.



STABILITY OF LINEAR CONTINUOUS SYSTEMS

X(t) = Ax(t)

Theorem (exponential stability):

Let the equilibrium point x, = 0 be asymptotically stable. Then,
the rate of convergence to x, = 0 Is exponential:

Ie(t)|| < e ||xg[, £ > 0

for all x(0) = x, € R", where A, €

IS an appropriate constant.

eigenvalues ofA

(0, min; [Re{A(A)})

A

and u >0

N

Y

Re



STABILITY OF LINEAR CONTINUOUS SYSTEMS
X(t) = Ax(t)

Theorem (exponential stability):

Let the equilibrium point x, = 0 be asymptotically stable. Then,
the rate of convergence to x, = 0 Is exponential:

Ie(t)|| < e ||xg[, £ > 0
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STABILITY OF LINEAR CONTINUOUS SYSTEMS
X(t) = Ax(t)

Theorem (exponential stability):

Let the equilibrium point x, = 0 be asymptotically stable. Then,
the rate of convergence to x, = 0 Is exponential:

lx(6)]| < pe™" |xo]|, £ > 0
for all x(0) = x, € R", where A, € (0, min; |Re{A,(A)}|) and pn >0

IS an appropriate constant.

Remark: — ||x(1)| = [leMxoll < pe 0" |lxgl, £ > 0, Vxg

At
e X — ot
ol < me M1 >0

= [[e]] = supy 0



STABILITY OF LINEAR CONTINUOUS SYSTEMS
X(t) = Ax(t)

Proof (exponential stability):
A + Ay | is Hurwitz (eigenvalues are equal to A(A) + A)
Then, there exists P = PT>0 such that
(A+2)TP+P (A+2l) <0
which leads to
X(1)TTAT P + P Alx(t) < - 2 1o x(1)" P x(t)
Define V(x) = xT P x, then
V(x(r)) < =24V (x())

from which
V(x(t)) < e 2V (xq)



STABILITY OF LINEAR CONTINUOUS SYSTEMS
X(t) = Ax(t)
(cont’d) Proof (exponential stability):

X Ain (P x <V (x) = xT Px < xT Anax (P) x

Amin(P)|[x(1) |2 <V (x(1)) < e 220V (xg) < e 2 Anax (P) | x0|>

thus finally leading to

/lmax(P )
| A-min(P )

lx(0)]| < e~ M| xo |



STABILITY OF LINEAR CONTINUOUS SYSTEMS
X(t) = Ax(t)

X, = 0 Is an equilibrium for the system

X, =0 Is asymptotically stable if and only if A is Hurwitz (all
eigenvalues with real part <0)

asymptotic stability = GAS = exponential stability = GES



TIME-VARYING CONTINUOUS SYSTEM

Suppose that f(0,) = 0.
Then, x=0 is an equilibrium.



UNIFORM STABILITY NOTIONS

The equilibrium x=0 is:
o stable if

Ve >0 3 d(e,tg) >0: ||z(to)] < d = ||z(®)| < €,V >t
o asymptotically stable if it is stable and

dc(tg) > 0: lim z(t) = 0,V|z(to)]| < c(to)

t—o0



UNIFORM STABILITY NOTIONS

The equilibrium x=0 is:
e uniformly stable if
Ve>036(e) >0: ||z(to)]| <6 — ||z(t)]] <€Vt >ty



UNIFORM STABILITY NOTIONS

The equilibrium x=0 is:

e uniformly asymptotically stable if it is uniformly stable and

dc¢>0: lim z(t) =0,V||z(ty)]| < ¢

t—oc

uniformly in t,, 1.e.

Ve >03T(e) >0: ||z(t)|| <eVt>tog+T(e), V|x(to)| < c



UNIFORM STABILITY NOTIONS

The equilibrium x=0 is:

e globally uniformly asymptotically stable if it is uniformly stable
and

Ve >0 and ¢ > 03T (e,c) >0
[z (t)[| < €Vt > to+T(ec), V|z(to)| <c



LYAPUNOV THEOREM
z(t) = f(z(t), 1)

Let x = 0 be an equilibrium
If V:[0,00) x R" — R is a C! function such that

Wi(z) <V(t,z) < Wy(x)
oV oV
ot Ox
where W (x), Wx(x), Ws(z) are continuous and positive definite
functions, then, x = 0 is uniformly asymptotically stable.

vVt > 0, Vx € R"

flx,t) < —Wa(x)



LYAPUNOV THEOREM
z(t) = f(z(t),?)
Let x = 0 be an equilibrium

If V:[0,00) x R" — R is a C! function such that

Wi(z) <V(t,z) < Wy(x)
PN N m,f(” 5 2 sl Vi >0, Ve e R
5 5 o B) 8 3(x)

where W (x), Wx(x), Ws(z) are continuous and positive definite
functions, then, x = 0 is uniformly asymptotically stable.

Furthermore, if Wi (x) is radially unbounded, then x = 0 is globally
uniformly asymptotically stable



LYAPUNOV THEOREM
z(t) = f(z(t), 1)

Let x = 0 be an equilibrium

Consider
Vite) = Pe,P=F %[

as candidate Lyapunov function. Then, one only needs to show that

V(t,z) = f(z,t) Px + 2'Pf(x,t) < —Ws(x), Vt > 0,Vz € R"
with W3(x) positive definite



LYAPUNOV THEOREM
z(t) = f(z(t), 1)

Let x = 0 be an equilibrium

Consider
Vite) = Pe,P=F %[

as candidate Lyapunov function. Then, one only needs to show that

V(t,z) = f(z,t) Px + 2'Pf(x,t) < —Ws(x), Vt > 0,Vz € R"
with W3(x) positive definite

Proof.

Amin (P)[[#]|* < 2" Pe < Amax(P) ||



LYAPUNOV THEOREM
z(t) = f(z(t), 1)

Let x = 0 be an equilibrium

Consider
Vite) = Pe,P=F %[

as candidate Lyapunov function. Then, one only needs to show that

V(t,z) = f(z,t) Px + 2'Pf(x,t) < —Ws(x), Vt > 0,Vz € R"
with W3(x) positive definite

Proof.

Wi(z) = Amin (P)||2]1* < 2’ Pr < Amax(P) 2] = Wa(2)

Wi(x), Wa(z) positive definite and W7 (x) radially unbounded



LYAPUNOV THEOREM
z(t) = f(z(t), 1)

Let x = 0 be an equilibrium

Consider
Vite) = Pe,P=F %[

as candidate Lyapunov function. Then, one only needs to show that

V(t,z) = f(z,t) Px + 2'Pf(x,t) < —Ws(x), Vt > 0,Vz € R"

with W3(x) positive definite

Global quadratic Lyapunov function



