A short review on Lyapunov stability

Nonlinear Control 2019/20

$$\dot{x}(t) = f(x(t))$$

with $f: \Re^n \to \Re^n$ globally Lipschitz continuous

Definition (equilibrium):

 $x_e \in \Re^n$ for which $f(x_e)=0$

Definition (stable equilibrium):

$$\forall \varepsilon > 0, \exists \delta > 0: \|x_0 - x_e\| < \delta \Rightarrow \|x(t) - x_e\| < \varepsilon, \forall t \ge 0$$

$$\|v\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$
execution starting from x(0)=x₀

small perturbations lead to small changes in behavior

Definition (asymptotically stable equilibrium):

$$\forall \varepsilon > 0, \exists \delta > 0: \|x_0 - x_e\| < \delta \rightarrow \|x(t) - x_e\| < \varepsilon, \forall t \geq 0$$
 and δ can be chosen so that $\lim_{t \to \infty} (x(t) - x_e) = 0$

small perturbations lead to small changes in behavior and are re-absorbed, in the long run

$$x_{1} = \theta$$

$$x_{2} = \dot{\theta}$$

$$\dot{x}_{1} = x_{2}$$

$$\dot{x}_{2} = -\frac{g}{l}\sin(x_{1}) - \frac{\alpha}{m}x_{2}$$

$$x_{1} = \theta$$

$$x_{2} = \dot{\theta}$$

$$\dot{x}_{1} = x_{2}$$

$$\dot{x}_{2} = -\frac{g}{l}\sin(x_{1}) - \frac{\alpha}{m}x_{2}$$

$$x_e = \begin{bmatrix} \pi \\ 0 \end{bmatrix}$$
 unstable equilibrium

$$x_1 = heta$$
 $x_2 = \dot{ heta}$
 $\dot{x}_1 = x_2$
 $\dot{x}_2 = -rac{g}{l}\sin(x_1) - rac{lpha}{m}x_2$
 $x_e = \left[egin{array}{c} 0 \\ 0 \end{array}
ight] ext{ as. stable equilibrium}$

$$x_{1} = \theta$$

$$x_{2} = \dot{\theta}$$

$$\dot{x}_{1} = x_{2}$$

$$\dot{x}_{2} = -\frac{g}{l}\sin(x_{1}) - \frac{\alpha}{m}x_{2}$$

Let x_e be asymptotically stable.

Definition (domain of attraction):

The domain of attraction of x_e is the set of x_0 such that

$$\lim_{t\to\infty} x(t) - x_e) = 0$$
execution starting from $x(0)=x_0$

Definition (globally asymptotically stable equilibrium):

 x_e is globally asymptotically stable (GAS) if its domain of attraction is the whole state space \Re^n

$$x_1 = \theta$$

$$x_2 = \dot{\theta}$$

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -\frac{g}{l}\sin(x_1) - \frac{\alpha}{m}x_2$$

$$x_e = \left[\begin{array}{c} 0 \\ 0 \end{array} \right]$$

 $x_e = \left[egin{array}{c} 0 \ 0 \end{array}
ight] \,\,$ as. stable equilibrium small perturbations are absorbed, not all perturbations → not GAS Let x_e be asymptotically stable.

Definition (exponential stability):

 x_e is exponentially stable if $\exists \alpha, \delta, \beta > 0$ such that

$$||x_0 - x_e|| < \delta \rightarrow ||x(t) - x_e|| \le \alpha ||x_0 - x_e|| e^{-\beta t}, \forall t \ge 0$$

$$\dot{x}(t) = f(x(t))$$

with $f: \Re^n \to \Re^n$ globally Lipschitz continuous

Definition (equilibrium):

$$x_e \in \Re^n$$
 for which $f(x_e)=0$

Without loss of generality we suppose that

$$x_e = 0$$

if not, then $z := x - x_e \rightarrow dz/dt = g(z)$, $g(z) := f(z + x_e) (g(0) = 0)$

$$\dot{x}(t) = f(x(t)), \quad f(0) = 0$$

with $f: \Re^n \to \Re^n$ globally Lipschitz continuous

How to prove stability?

find a function V: $\Re^n \to \Re$ such that

$$V(0) = 0$$
 and $V(x) > 0$, for all $x \neq 0$

V(x) is decreasing along the executions of the system

Advantage with respect to exhaustive check of all executions?

$$\dot{x}(t)=f(x(t)), \quad f(0)=0$$
 with f: $\Re^{\rm n}\to\Re^{\rm n}$ globally Lipschitz continuous $\quad f(x)=\begin{bmatrix} f_1(x)\\ f_2(x)\\ \vdots\\ f_n(x) \end{bmatrix}$

 $V \colon \Re^n \to \Re$ continuously differentiable (C¹) function

Rate of change of V along the execution of the ODE system:

$$\dot{V}(x) = \frac{dV(x(t))}{dt} = \sum_{i=1}^{n} \frac{\partial V}{\partial x_i} \dot{x}_i = \sum_{i=1}^{n} \frac{\partial V}{\partial x_i} f_i(x) = \frac{\partial V}{\partial x} (x) \cdot f(x)$$
(Lie derivative of V with respect to f)
$$\frac{\partial V}{\partial x} = \left[\frac{\partial V}{\partial x_1} \frac{\partial V}{\partial x_2} \cdots \frac{\partial V}{\partial x_n} \right]$$
gradient vector

$$\dot{x}(t)=f(x(t)), \quad f(0)=0$$
 with f: $\Re^{\rm n}\to\Re^{\rm n}$ globally Lipschitz continuous
$$f(x)=\begin{bmatrix}f_1(x)\\f_2(x)\\\vdots\\f_n(x)\end{bmatrix}$$
 V: $\Re^{\rm n}\to\Re$ continuously differentiable (C¹) function

Rate of change of V along the execution of the ODE system:

$$\dot{V}(x) = \frac{dV(x(t))}{dt} = \sum_{i=1}^{n} \frac{\partial V}{\partial x_i} \dot{x}_i = \sum_{i=1}^{n} \frac{\partial V}{\partial x_i} f_i(x) = \frac{\partial V}{\partial x} (x) \cdot f(x)$$
(Lie derivative of V with respect to f)
$$\frac{\partial V}{\partial x} = \left[\frac{\partial V}{\partial x_1} \frac{\partial V}{\partial x_2} \cdots \frac{\partial V}{\partial x_n} \right]$$
gradient vector

No need to solve the ODE for evaluating if V(x) decreases along the executions of the system

LYAPUNOV STABILITY

Theorem (Lyapunov stability Theorem):

Let $x_e = 0$ be an equilibrium for the system and $D \subset \Re^n$ an open set containing $x_e = 0$.

If V: D $\rightarrow \Re$ is a C¹ function such that

$$egin{align*} V(0) &= 0 \\ V(x) &> 0, \, orall x \in D \setminus \{0\} \ \end{bmatrix}$$
 V positive definite on D $\dot{V}(x) &\leq 0, \, orall x \in D \ \end{cases}$ V non increasing along system executions in D

Then, x_e is stable.

system executions in D (negative semidefinite)

$$x_{1} = \theta$$

$$x_{2} = \dot{\theta}$$

$$\dot{x}_{1} = x_{2}$$

$$\dot{x}_{2} = -\frac{g}{l}\sin(x_{1}) - \frac{\alpha}{m}x_{2}$$

$$x_{e} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$V(x) := mgl(1-\cos(x_1)) + \frac{1}{2}mx_2^2l^2 \geq 0 \qquad \text{energy function}$$

$$\begin{split} \dot{V}(x) &= [mgl\sin(x_1)\ ml^2x_2] \cdot \left[\begin{array}{c} \dot{x}_1 \\ \dot{x}_2 \end{array}\right] = -\alpha l^2x_2^2 \leq 0 \\ \text{x}_{\text{e}} \text{ stable} \end{split}$$

LYAPUNOV STABILITY

Theorem (Lyapunov stability Theorem):

Let $x_e = 0$ be an equilibrium for the system and $D \subset \Re^n$ an open set containing $x_e = 0$.

If V: D $\rightarrow \Re$ is a C¹ function such that

$$V(0) = 0$$

$$V(x) > 0, \forall x \in D \setminus \{0\}$$

$$\dot{V}(x) \le 0, \forall x \in D$$

Then, x_e is stable.

If it holds also that

$$\dot{V}(x) < 0, \forall x \in D \setminus \{0\}$$

Then, x_e is asymptotically stable (AS).

LYAPUNOV STABILITY

Theorem (Lyapunov stability Theorem):

Let $x_e = 0$ be an equilibrium for the system and $D \subset \Re^n$ an open set containing $x_e = 0$.

If V: D $\rightarrow \Re$ is a C¹ function such that

$$V(0) = 0$$

$$V(x) > 0, \forall x \in D \setminus \{0\}$$

$$\dot{V}(x) \le 0, \forall x \in D$$

Then, x_e is stable.

La Salle Invariance principle:

If $\{x \in \Re^n : \dot{V}(x) = 0\} \cap D$ does not contain any trajectories of the system besides $x(t) = 0, t \ge 0$, then, x_e is asymptotically stable

$$x_{1} = \theta$$

$$x_{2} = \dot{\theta}$$

$$\dot{x}_{1} = x_{2}$$

$$\dot{x}_{2} = -\frac{g}{l}\sin(x_{1}) - \frac{\alpha}{m}x_{2}$$

$$x_{e} = \begin{bmatrix} 0\\0 \end{bmatrix}$$

$$V(x) := mgl(1 - \cos(x_1)) + \frac{1}{2}mx_2^2l^2 \ge 0 \qquad \text{energy function}$$

$$\dot{V}(x) = \left[mgl \sin(x_1) \ ml^2 x_2 \right] \cdot \left[\begin{array}{c} \dot{x}_1 \\ \dot{x}_2 \end{array} \right] = -\alpha l^2 x_2^2 \le 0$$

 x_e asymptotically stable (not globally) by La Salle Invariance Principle restricted to D that does not include the other equilibrium.

LYAPUNOV GAS THEOREM

Theorem (Barbashin-Krasovski Theorem):

Let $x_e = 0$ be an equilibrium for the system.

If V: $\Re^n \to \Re$ is a C¹ function such that

$$V(0) = 0$$

$$V(x) > 0, \forall x \in \Re^n \setminus \{0\}$$

$$\dot{V}(x) < 0, \forall x \in \Re^n \setminus \{0\}$$

V positive definite on ℜⁿ

 $\dot{V}(x) < 0, \forall x \in \Re^n \setminus \{0\}$ V decreasing along system executions in \Re^n (negative definite)

$$\lim_{\|x\|\to\infty}V(x)=\infty$$

V radially unbounded

Then, x_e is globally asymptotically stable (GAS).

Remark: if $\dot{V}(x) \leq 0, \forall x \in \Re^n$, one may show GAS via La Salle

$$\dot{x}(t) = Ax(t)$$

• $x_e = 0$ is an equilibrium for the system

$$x(t) = e^{At}x(0), t \ge 0$$

$$e^{At} \rightarrow 0$$

• the elements of matrix e^{At} are linear combinations of $e^{\lambda(A)t}$, $t^ke^{\lambda_i(A)t}$, ... $t^ke^{\lambda(A)t}$, where $\lambda(A)$ is an eigenvalue of A

$$\dot{x}(t) = Ax(t)$$

• $x_e = 0$ is an equilibrium for the system

$$x(t) = e^{At}x(0), t \ge 0$$

$$e^{At} \rightarrow 0$$

- x_e =0 is asymptotically stable if and only if A is Hurwitz (all eigenvalues with real part <0)
- asymptotic stability ≡ GAS

$$\dot{x}(t) = Ax(t)$$

• $x_e = 0$ is an equilibrium for the system

$$x(t) = e^{At}x(0), t \ge 0$$

$$e^{At} \rightarrow 0$$

- x_e =0 is asymptotically stable if and only if A is Hurwitz (all eigenvalues with real part <0)
- asymptotic stability ≡ GAS

Alternative characterization...

$$\dot{x}(t) = Ax(t)$$

Theorem (necessary and sufficient condition):

The equilibrium point $x_e = 0$ is asymptotically stable if and only if for all matrices $Q = Q^T$ positive definite (Q>0) the

$$A^TP+PA = -Q$$
 Lyapunov equation

has a unique solution $P=P^T>0$.

Remarks:

Q positive definite (Q>0) iff $x^TQx > 0$ for all $x \neq 0$

Q positive semidefinite (Q \geqslant 0) iff $x^TQx \ge 0$ for all x and $x^T Q x = 0$ for some $x \neq 0$

$$\dot{x}(t) = Ax(t)$$

Theorem (necessary and sufficient condition):

The equilibrium point $x_e = 0$ is asymptotically stable if and only if for all matrices $Q = Q^T$ positive definite (Q>0) the

$$A^TP+PA = -Q$$
 Lyapunov equation

has a unique solution $P=P^T>0$.

Proof.

(if) $V(x) = x^T P x$ is a Lyapunov function

$$\dot{V}(x) = \dot{x}^T P x + x^T P \dot{x}$$
$$= x^T (A^T P + PA) x = -x^T Q x < 0, \forall x \neq 0$$

$$\dot{x}(t) = Ax(t)$$

Theorem (necessary and sufficient condition):

The equilibrium point $x_e = 0$ is asymptotically stable if and only if for all matrices $Q = Q^T$ positive definite (Q>0) the

$$A^TP+PA = -Q$$
 Lyapunov equation

has a unique solution $P=P^T>0$.

Proof.

(only if) Consider
$$P = \int_0^\infty e^{A^T t} Q e^{At} dt$$

$$A^T P + PA = \int_0^\infty A^T e^{A^T t} Q e^{At} dt + \int_0^\infty e^{A^T t} Q e^{At} A dt$$

$$= \int_0^\infty \frac{d}{dt} e^{A^T t} Q e^{At} dt = -Q$$

$$\dot{x}(t) = Ax(t)$$

Theorem (necessary and sufficient condition):

The equilibrium point $x_e = 0$ is asymptotically stable if and only if for all matrices $Q = Q^T$ positive definite (Q>0) the

has a unique solution $P=P^T>0$.

Proof.

(only if) Consider
$$P = \int_0^\infty e^{A^T t} Q e^{At} dt$$

 $P = P^T$ and P > 0 easy to show

P unique can be proven by contradiction

$$\dot{x}(t) = Ax(t)$$

Remarks: for a linear system

- existence of a (quadratic) Lyapunov function $V(x) = x^T P x$ is a necessary and sufficient condition for asymptotic stability
- it is easy to compute a Lyapunov function since the Lyapunov equation

$$A^TP+PA = -Q$$

is a linear algebraic equation

$$\dot{x}(t) = Ax(t)$$

Theorem (exponential stability):

Let the equilibrium point $x_e = 0$ be asymptotically stable. Then, the rate of convergence to $x_e = 0$ is exponential:

$$||x(t)|| \le \mu e^{-\lambda_0 t} ||x_0||, t \ge 0$$

for all $x(0) = x_0 \in \Re^n$, where $\lambda_0 \in (0, \min_i |Re\{\lambda_i(A)\}|)$ and $\mu > 0$ is an appropriate constant.

$$\dot{x}(t) = Ax(t)$$

Theorem (exponential stability):

Let the equilibrium point $x_e = 0$ be asymptotically stable. Then, the rate of convergence to $x_e = 0$ is exponential:

$$||x(t)|| \le \mu e^{-\lambda_0 t} ||x_0||, t \ge 0$$

for all $x(0)=x_0\in\Re^n$, where $\lambda_0\in[0,\min_i|\text{Re}\{\lambda_i(A)\}|)$ and $\mu>0$ is an appropriate constant.

$$\dot{x}(t) = Ax(t)$$

Theorem (exponential stability):

Let the equilibrium point $x_e = 0$ be asymptotically stable. Then, the rate of convergence to $x_e = 0$ is exponential:

$$||x(t)|| \le \mu e^{-\lambda_0 t} ||x_0||, t \ge 0$$

$$\dot{x}(t) = Ax(t)$$

Theorem (exponential stability):

Let the equilibrium point $x_e = 0$ be asymptotically stable. Then, the rate of convergence to $x_e = 0$ is exponential:

$$||x(t)|| \le \mu e^{-\lambda_0 t} ||x_0||, t \ge 0$$

for all $x(0) = x_0 \in \Re^n$, where $\lambda_0 \in (0, \min_i |Re\{\lambda_i(A)\}|)$ and $\mu > 0$ is an appropriate constant.

Remark:
$$||x(t)|| = ||e^{At}x_0|| \le \mu e^{-\lambda_0 t} ||x_0||, t \ge 0, \forall x_0$$

$$\to ||e^{At}|| = \sup_{x_0 \ne 0} \frac{||e^{At}x_0||}{||x_0||} \le \mu e^{-\lambda_0 t}, t \ge 0$$

$$\dot{x}(t) = Ax(t)$$

Proof (exponential stability):

A + λ_0 I is Hurwitz (eigenvalues are equal to $\lambda(A) + \lambda_0$)

Then, there exists $P = P^T > 0$ such that

$$(A + \lambda_0 I)^T P + P (A + \lambda_0 I) < 0$$

which leads to

$$x(t)^{T}[A^{T} P + P A]x(t) < -2 \lambda_{0} x(t)^{T} P x(t)$$

Define $V(x) = x^T P x$, then

$$\dot{V}(x(t)) < -2\lambda_0 V(x(t))$$

from which

$$V(x(t)) < e^{-2\lambda_0 t} V(x_0)$$

$$\dot{x}(t) = Ax(t)$$

(cont'd) Proof (exponential stability):

$$x^{T} \lambda_{\min}(P) Ix \le V(x) = x^{T} Px \le x^{T} \lambda_{\max}(P) Ix$$

$$||\lambda_{\min}(P)||x(t)||^2 \le V(x(t)) < e^{-2\lambda_0 t} V(x_0) \le e^{-2\lambda_0 t} \lambda_{\max}(P) ||x_0||^2$$

thus finally leading to

$$||x(t)|| \le \sqrt{\frac{\lambda_{\max}(P)}{\lambda_{\min}(P)}} e^{-\lambda_0 t} ||x_0||$$

STABILITY OF LINEAR CONTINUOUS SYSTEMS

$$\dot{x}(t) = Ax(t)$$

- $x_e = 0$ is an equilibrium for the system
- x_e =0 is asymptotically stable if and only if A is Hurwitz (all eigenvalues with real part <0)
- asymptotic stability ≡ GAS ≡ exponential stability ≡ GES

TIME-VARYING CONTINUOUS SYSTEM

$$\dot{x}(t) = f(x(t), t)$$

Suppose that $f(0,\cdot) = 0$.

Then, x=0 is an equilibrium.

$$\dot{x}(t) = f(x(t), t)$$

The equilibrium x=0 is:

stable if

$$\forall \epsilon > 0 \; \exists \; \delta(\epsilon, t_0) > 0 : \; ||x(t_0)|| < \delta \to ||x(t)|| < \epsilon, \forall t \ge t_0$$

asymptotically stable if it is stable and

$$\exists c(t_0) > 0 : \lim_{t \to \infty} x(t) = 0, \forall ||x(t_0)|| < c(t_0)$$

$$\dot{x}(t) = f(x(t), t)$$

The equilibrium x=0 is:

• uniformly stable if

$$\forall \epsilon > 0 \; \exists \; \delta(\epsilon) > 0 : \; ||x(t_0)|| < \delta \rightarrow ||x(t)|| < \epsilon, \forall t \ge t_0$$

$$\dot{x}(t) = f(x(t), t)$$

The equilibrium x=0 is:

uniformly asymptotically stable if it is uniformly stable and

$$\exists c > 0 : \lim_{t \to \infty} x(t) = 0, \forall ||x(t_0)|| < c$$

uniformly in t₀, i.e.

$$\forall \epsilon > 0 \exists T(\epsilon) > 0 : ||x(t)|| < \epsilon \forall t \ge t_0 + T(\epsilon), \forall ||x(t_0)|| < c$$

$$\dot{x}(t) = f(x(t), t)$$

The equilibrium x=0 is:

 globally uniformly asymptotically stable if it is uniformly stable and

$$\forall \epsilon > 0 \text{ and } c > 0 \exists T(\epsilon, c) > 0:$$

$$||x(t)|| < \epsilon \ \forall t \ge t_0 + T(\epsilon, c), \ \forall ||x(t_0)|| < c$$

$$\dot{x}(t) = f(x(t), t)$$

Let x = 0 be an equilibrium

If $V:[0,\infty)\times\Re^n\to\Re$ is a C¹ function such that

$$\frac{W_1(x) \le V(t, x) \le W_2(x)}{\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(x, t) \le -W_3(x)} \quad \forall t \ge 0, \ \forall x \in \Re^n$$

where $W_1(x)$, $W_2(x)$, $W_3(x)$ are continuous and positive definite functions, then, x = 0 is uniformly asymptotically stable.

$$\dot{x}(t) = f(x(t), t)$$

Let x = 0 be an equilibrium

If $V:[0,\infty)\times\Re^n\to\Re$ is a C¹ function such that

$$\frac{W_1(x) \le V(t, x) \le W_2(x)}{\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(x, t) \le -W_3(x)} \quad \forall t \ge 0, \ \forall x \in \Re^n$$

where $W_1(x)$, $W_2(x)$, $W_3(x)$ are continuous and positive definite functions, then, x = 0 is uniformly asymptotically stable.

Furthermore, if $W_1(x)$ is radially unbounded, then x=0 is globally uniformly asymptotically stable

$$\dot{x}(t) = f(x(t), t)$$

Let x = 0 be an equilibrium

Consider

$$V(t,x) = x'Px, P = P' > 0$$

as candidate Lyapunov function. Then, one only needs to show that

$$\dot{V}(t,x) = f(x,t)'Px + x'Pf(x,t) \le -W_3(x), \forall t \ge 0, \forall x \in \Re^n$$

with $W_3(x)$ positive definite

$$\dot{x}(t) = f(x(t), t)$$

Let x = 0 be an equilibrium

Consider

$$V(t,x) = x'Px, P = P' > 0$$

as candidate Lyapunov function. Then, one only needs to show that

$$\dot{V}(t,x) = f(x,t)'Px + x'Pf(x,t) \le -W_3(x), \forall t \ge 0, \forall x \in \Re^n$$

with $W_3(x)$ positive definite

Proof.

$$\lambda_{\min}(P)\|x\|^2 \le x' P x \le \lambda_{\max}(P)\|x\|^2$$

$$\dot{x}(t) = f(x(t), t)$$

Let x = 0 be an equilibrium

Consider

$$V(t,x) = x'Px, P = P' > 0$$

as candidate Lyapunov function. Then, one only needs to show that

$$\dot{V}(t,x) = f(x,t)'Px + x'Pf(x,t) \le -W_3(x), \forall t \ge 0, \forall x \in \Re^n$$

with $W_3(x)$ positive definite

Proof.

$$W_1(x) = \lambda_{\min}(P) ||x||^2 \le x' P x \le \lambda_{\max}(P) ||x||^2 = W_2(x)$$

 $W_1(x), \ W_2(x)$ positive definite and $W_1(x)$ radially unbounded

$$\dot{x}(t) = f(x(t), t)$$

Let x = 0 be an equilibrium

Consider

$$V(t,x) = x'Px, P = P' > 0$$

as candidate Lyapunov function. Then, one only needs to show that

$$\dot{V}(t,x) = f(x,t)'Px + x'Pf(x,t) \le -W_3(x), \forall t \ge 0, \forall x \in \Re^n$$

with $W_3(x)$ positive definite

Global quadratic Lyapunov function