INPUT-OUTPUT APPROACH: STABILITY

Definition (\mathcal{L} stability):

A causal operator $H : \mathcal{L}_e \to \mathcal{L}_e$ is \mathcal{L} - stable if $H(\mathcal{L}) \subseteq \mathcal{L}$, that is $H(u(\cdot)) \in \mathcal{L}, \quad \forall u(\cdot) \in \mathcal{L}$

Definition (\mathcal{L} stability):

A causal operator $H: \mathcal{L}_e \to \mathcal{L}_e$ is \mathcal{L} - stable if $H(\mathcal{L}) \subseteq \mathcal{L}$, that is $H(u(\cdot)) \in \mathcal{L}, \quad \forall u(\cdot) \in \mathcal{L}$

• If $\mathcal{L} = L_{\infty} \rightarrow \text{BIBO}$ (bounded input bounded output) stability

Definition (\mathcal{L} stability):

A causal operator $H: \mathcal{L}_e \to \mathcal{L}_e$ is \mathcal{L} - stable if $H(\mathcal{L}) \subseteq \mathcal{L}$, that is $H(u(\cdot)) \in \mathcal{L}, \quad \forall u(\cdot) \in \mathcal{L}$

Remarks

- It is a property of the system
- It applies to both static and dynamic systems
- It depends on $\mathcal L$

Definition (\mathcal{L} stability):

A causal operator $H : \mathcal{L}_e \to \mathcal{L}_e$ is \mathcal{L} - stable if $H(\mathcal{L}) \subseteq \mathcal{L}$, that is $H(u(\cdot)) \in \mathcal{L}, \quad \forall u(\cdot) \in \mathcal{L}$

Theorem

A causal operator $H: \mathcal{L}_e \to \mathcal{L}_e$ is \mathcal{L} - stable if and only if there exist

- a continuous increasing function $\sigma(\cdot): \Re^+ \to \Re^+$ with $\sigma(0) = 0$
- a constant $\beta \in \Re^+$

such that $||H(u(\cdot))|| \leq \sigma(||u(\cdot)||) + \beta, \forall u(\cdot) \in \mathcal{L}$

Definition (\mathcal{L} stability):

A causal operator $H : \mathcal{L}_e \to \mathcal{L}_e$ is \mathcal{L} - stable if $H(\mathcal{L}) \subseteq \mathcal{L}$, that is $H(u(\cdot)) \in \mathcal{L}, \quad \forall u(\cdot) \in \mathcal{L}$

Theorem

A causal operator $H: \mathcal{L}_e \to \mathcal{L}_e$ is \mathcal{L} - stable if and only if there exist

- a continuous increasing function $\sigma(\cdot): \Re^+ \to \Re^+$ with $\sigma(0) = 0$
- a constant $\beta \in \Re^+$

such that $||H(u(\cdot))|| \le \sigma(||u(\cdot)||) + \beta, \forall u(\cdot) \in \mathcal{L}$

Proof.

← straightforward

Definition (\mathcal{L} stability):

A causal operator $H : \mathcal{L}_e \to \mathcal{L}_e$ is \mathcal{L} - stable if $H(\mathcal{L}) \subseteq \mathcal{L}$, that is $H(u(\cdot)) \in \mathcal{L}, \quad \forall u(\cdot) \in \mathcal{L}$

Theorem

A causal operator $H: \mathcal{L}_e \to \mathcal{L}_e$ is \mathcal{L} - stable if and only if there exist

- a continuous increasing function $\sigma(\cdot): \Re^+ \to \Re^+$ with $\sigma(0) = 0$
- a constant $\beta \in \Re^+$

such that $||H(u(\cdot))|| \le \sigma(||u(\cdot)||) + \beta, \forall u(\cdot) \in \mathcal{L}$ <u>Proof.</u> (\rightarrow)

If H is \mathcal{L} - stable, then for any $v \in \Re^+ \zeta(v) := \sup_{\|u(\cdot)\| \le v, u(\cdot) \in \mathcal{L}} \|H(u(\cdot))\|$ is well-defined and finite, from which we get

 $||H(u(\cdot))|| \le \zeta(||u(\cdot)||), \ \forall u(\cdot) \in \mathcal{L}$

Definition (\mathcal{L} stability):

A causal operator $H : \mathcal{L}_e \to \mathcal{L}_e$ is \mathcal{L} - stable if $H(\mathcal{L}) \subseteq \mathcal{L}$, that is $H(u(\cdot)) \in \mathcal{L}, \quad \forall u(\cdot) \in \mathcal{L}$

Theorem

A causal operator $H: \mathcal{L}_e \to \mathcal{L}_e$ is \mathcal{L} - stable if and only if there exist

- a continuous increasing function $\sigma(\cdot): \Re^+ \to \Re^+$ with $\sigma(0) = 0$
- a constant $\beta \in \Re^+$

such that $||H(u(\cdot))|| \le \sigma(||u(\cdot)||) + \beta, \forall u(\cdot) \in \mathcal{L}$ <u>Proof.</u> (\rightarrow)

Since $\zeta(\cdot): \Re^+ \to \Re^+$ is a non negative function that is non decreasing, then, there exists a function $\sigma(\cdot): \Re^+ \to \Re^+$ continuous and increasing with $\sigma(0) = 0$ and $\beta \in \Re^+$ such that

$$\zeta(v) \le \sigma(v) + \beta, \ \forall v \in \Re^+$$

and, hence,

 $||H(u(\cdot))|| \le \zeta(||u(\cdot)||) \le \sigma(||u(\cdot)||) + \beta, \ \forall u(\cdot) \in \mathcal{L}$

Definition (\mathcal{L} stability):

A causal operator $H : \mathcal{L}_e \to \mathcal{L}_e$ is \mathcal{L} - stable if $H(\mathcal{L}) \subseteq \mathcal{L}$, that is $H(u(\cdot)) \in \mathcal{L}, \quad \forall u(\cdot) \in \mathcal{L}$

Theorem

A causal operator $H: \mathcal{L}_e \to \mathcal{L}_e$ is \mathcal{L} - stable if and only if there exist

- a continuous increasing function $\sigma(\cdot): \Re^+ \to \Re^+$ with $\sigma(0) = 0$
- a constant $\beta \in \Re^+$

such that $||H(u(\cdot))|| \le \sigma(||u(\cdot)||) + \beta, \forall u(\cdot) \in \mathcal{L}$

<u>Corollary</u>

A causal weakly bounded operator $H : \mathcal{L}_e \to \mathcal{L}_e$ is \mathcal{L} - stable.

Definition (\mathcal{L} stability):

A causal operator $H : \mathcal{L}_e \to \mathcal{L}_e$ is \mathcal{L} - stable if $H(\mathcal{L}) \subseteq \mathcal{L}$, that is $H(u(\cdot)) \in \mathcal{L}, \quad \forall u(\cdot) \in \mathcal{L}$

Theorem

A causal operator $H: \mathcal{L}_e \to \mathcal{L}_e$ is \mathcal{L} - stable if and only if there exist

- a continuous increasing function $\sigma(\cdot): \Re^+ \to \Re^+$ with $\sigma(0) = 0$
- a constant $\beta \in \Re^+$

such that $||H(u(\cdot))|| \leq \sigma(||u(\cdot)||) + \beta, \forall u(\cdot) \in \mathcal{L}$

<u>Corollary</u>

A causal weakly bounded operator $H : \mathcal{L}_e \to \mathcal{L}_e$ is \mathcal{L} - stable.

$$\exists \hat{\gamma}, \hat{\beta} \in \Re^+ : \|H(u(\cdot))\| \le \hat{\gamma} \|u(\cdot)\| + \hat{\beta}, \ \forall u(\cdot) \in \mathcal{L}$$

Definition (\mathcal{L} stability):

A causal operator $H : \mathcal{L}_e \to \mathcal{L}_e$ is \mathcal{L} - stable if $H(\mathcal{L}) \subseteq \mathcal{L}$, that is $H(u(\cdot)) \in \mathcal{L}, \quad \forall u(\cdot) \in \mathcal{L}$

Theorem

A causal operator $H: \mathcal{L}_e \to \mathcal{L}_e$ is \mathcal{L} - stable if and only if there exist

- a continuous increasing function $\sigma(\cdot): \Re^+ \to \Re^+$ with $\sigma(0) = 0$
- a constant $\beta \in \Re^+$

such that $||H(u(\cdot))|| \leq \sigma(||u(\cdot)||) + \beta, \forall u(\cdot) \in \mathcal{L}$

<u>Corollary</u>

A causal weakly bounded operator $H : \mathcal{L}_e \to \mathcal{L}_e$ is \mathcal{L} - stable.

$$\exists \hat{\gamma}, \hat{\beta} \in \Re^{+}: \|H(u(\cdot))\| \leq \hat{\gamma} \|u(\cdot)\| + \hat{\beta}, \forall u(\cdot) \in \mathcal{L}$$

'finite gain \mathcal{L} - stability'

Definition (\mathcal{L} stability):

A causal operator $H : \mathcal{L}_e \to \mathcal{L}_e$ is \mathcal{L} - stable if $H(\mathcal{L}) \subseteq \mathcal{L}$, that is $H(u(\cdot)) \in \mathcal{L}, \quad \forall u(\cdot) \in \mathcal{L}$

Theorem

A causal operator $H: \mathcal{L}_e \to \mathcal{L}_e$ is \mathcal{L} - stable if and only if there exist

- a continuous increasing function $\sigma(\cdot): \Re^+ \to \Re^+$ with $\sigma(0) = 0$
- a constant $\beta \in \Re^+$

such that $||H(u(\cdot))|| \le \sigma(||u(\cdot)||) + \beta, \forall u(\cdot) \in \mathcal{L}$

<u>Corollary</u>

A causal weakly bounded operator $H : \mathcal{L}_e \to \mathcal{L}_e$ is \mathcal{L} - stable.

Remark:

the opposite is not true, in general (example: $\mathcal{L} = L_{\infty}$ and static system described by a continuous function that grows more than linearly)

Problem:

Identify connections between various kinds of I/O stability and of Lyapunov stability.

Problem:

Identify connections between various kinds of I/O stability and of Lyapunov stability.

Results are very few.

Exception: the class of linear time invariant systems.

Problem:

Identify connections between various kinds of I/O stability and of Lyapunov stability.

Results are very few.

Exception: the class of linear time invariant systems.

Proposition

Given a linear time invariant dynamical system S

S asymptotically stable \rightarrow the operator H associated with S is L_p-stable for any $p \in (0,\infty]$

Problem:

Identify connections between various kinds of I/O stability and of Lyapunov stability.

Results are very few.

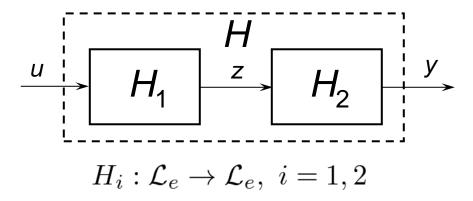
Exception: the class of linear time invariant systems.

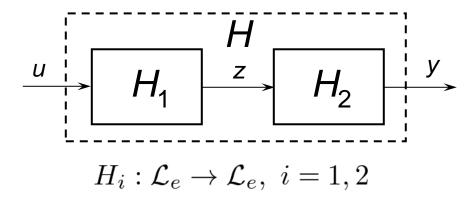
Proposition

Given a linear time invariant dynamical system S

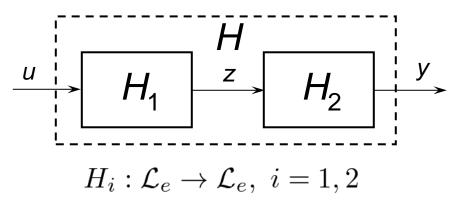
S asymptotically stable \rightarrow the operator H associated with S is L_p-stable for any $p \in (0,\infty]$

H is L_p -stable, $p \in (0,\infty] \rightarrow S$ is asymptotically stable if and only if ts non-observable and non-reachable parts are asymptotically stable





$$u(\cdot) \in \mathcal{L}_e \to y(\cdot) = H(u(\cdot)) = H_2(H_1(u(\cdot))) \in \mathcal{L}_e$$

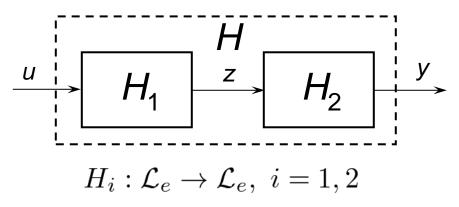


Theorem

Two causal and weakly bounded operators $H_1 \in H_2$, interconnected in cascade, originates an operator H

$$u(\cdot) \in \mathcal{L}_e \to y(\cdot) = H(u(\cdot)) = H_2(H_1(u(\cdot))) \in \mathcal{L}_e$$

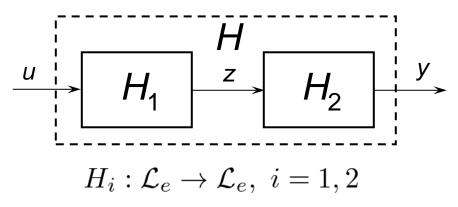
causal and weakly bounded with gain $\gamma(H) \leq \gamma(H_1)\gamma(H_2)$



Proof:

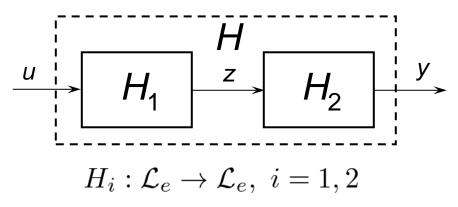
H₁ weakly bounded implies that

 $\exists \gamma_1, \beta_1 \in \Re^+ : \|H_1(u(\cdot))\| \le \gamma_1 \|u(\cdot)\| + \beta_1, \forall u(\cdot) \in \mathcal{L} \to z(\cdot) = H_1(u(\cdot)) \in \mathcal{L}$



Proof:

H₁ weakly bounded implies that $\exists \gamma_1, \beta_1 \in \Re^+ : \|H_1(u(\cdot))\| \leq \gamma_1 \|u(\cdot)\| + \beta_1, \forall u(\cdot) \in \mathcal{L} \to z(\cdot) = H_1(u(\cdot)) \in \mathcal{L}$ H₂ weakly bounded implies that $\exists \gamma_2, \beta_2 \in \Re^+ : \|H_2(z(\cdot))\| \leq \gamma_2 \|z(\cdot)\| + \beta_2, \forall z(\cdot) \in \mathcal{L}$



Proof:

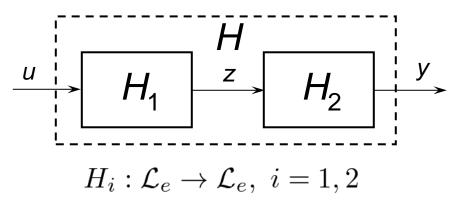
 $\begin{aligned} & \mathsf{H}_{1} \text{ weakly bounded implies that} \\ & \exists \gamma_{1}, \beta_{1} \in \Re^{+} : \ \|H_{1}(u(\cdot))\| \leq \gamma_{1} \|u(\cdot)\| + \beta_{1}, \forall u(\cdot) \in \mathcal{L} \rightarrow z(\cdot) = H_{1}(u(\cdot)) \in \mathcal{L} \\ & \mathsf{H}_{2} \text{ weakly bounded implies that} \\ & \exists \gamma_{2}, \beta_{2} \in \Re^{+} : \ \|H_{2}(z(\cdot))\| \leq \gamma_{2} \|z(\cdot)\| + \beta_{2}, \forall z(\cdot) \in \mathcal{L} \end{aligned}$

Then,

$$||H(u(\cdot))|| = ||H_2(H_1(u(\cdot)))|| \le \gamma_2(\gamma_1 ||u(\cdot)|| + \beta_1) + \beta_2$$

= $\gamma_2 \gamma_1 ||u(\cdot)|| + \gamma_2 \beta_1 + \beta_2, \forall u(\cdot) \in \mathcal{L}$

that is H is weakly bounded and $\gamma(H) \leq \gamma(H_1)\gamma(H_2)$



Example:

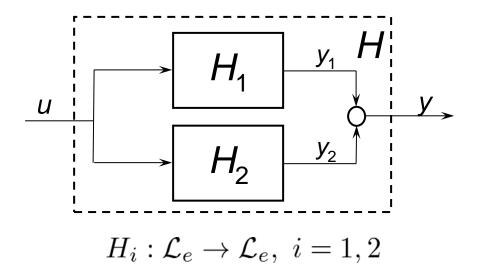
Linear asymptotically stable time invariant dynamical systems with transfer functions $F_1(s)$ and $F_2(s)$

→ The cascade system has transfer function $F(s) = F_1(s)F_2(s)$

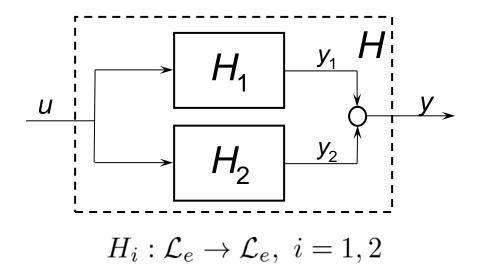
Let $\mathcal{L} = L_2$. Then,

$$\gamma_2(H) = F_{\max} = \max_{\omega \in \Re^+} |F(j\omega)| \le F_{1,\max}F_{2,\max} = \gamma_2(H_1)\gamma_2(H_2)$$

STABILITY OF INTECONNECTED SYSTEMS: PARALLEL

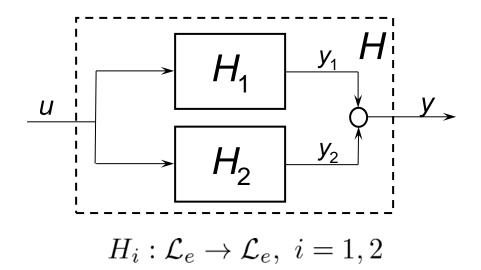


STABILITY OF INTECONNECTED SYSTEMS: PARALLEL



 $u(\cdot) \in \mathcal{L}_e \to y(\cdot) = H_1(u(\cdot)) + H_2(u(\cdot)) \in \mathcal{L}_e$

STABILITY OF INTECONNECTED SYSTEMS: PARALLEL

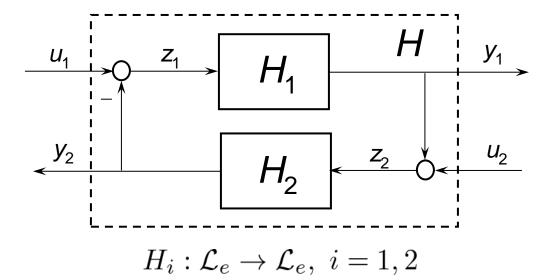


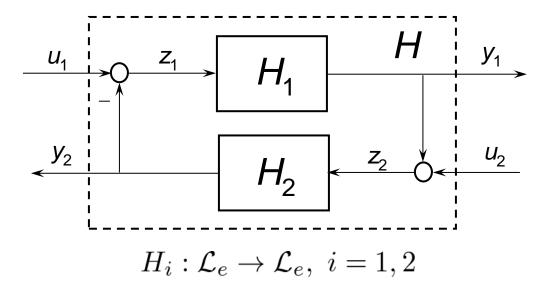
Theorem

Two causal and weakly bounded operators $H_1 \in H_2$, interconnected in parallel, originates an operator H

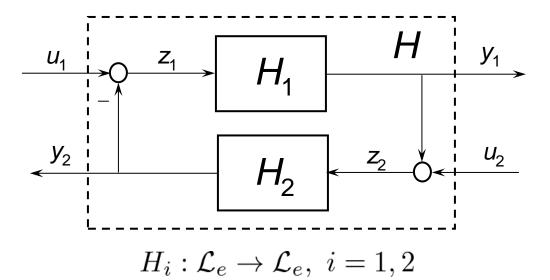
$$u(\cdot) \in \mathcal{L}_e \to y(\cdot) = H_1(u(\cdot)) + H_2(u(\cdot)) \in \mathcal{L}_e$$

causal and weakly bounded with gain $\gamma(H) \leq \gamma(H_1) + \gamma(H_2)$ <u>Proof: [to do as exercise]</u>



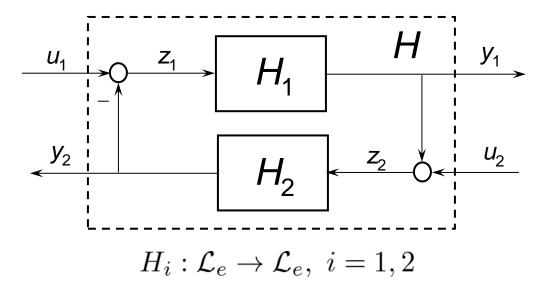


Is the operator *H* obtained by interconnecting in feedback the causal operators H₁ and H₂ is well-posed, i.e., the pair (y₁, y₂) exists and is unique for any (u₁, u₂) ∈ L_e × L_e ?



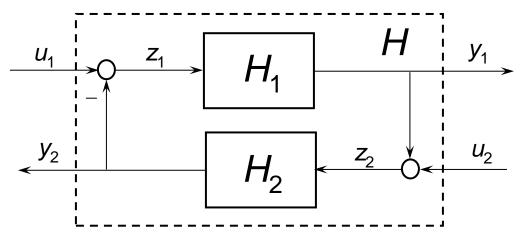
• Is the operator H obtained by interconnecting in feedback the causal operators H_1 and H_2 is well-posed, i.e., the pair (y_1, y_2) exists and is unique for any $(u_1, u_2) \in \mathcal{L}_e \times \mathcal{L}_e$?

No, in general... It is well-posed if one of the two causal operators is strictly proper.



• The operator *H* has two inputs and two outputs. Let us define the operators with one input and one output:

$$H_{ij}: \mathcal{L}_e \to \mathcal{L}_e \quad y_i(\cdot) = H_{ij}(u_j(\cdot)), \ i, j = 1, 2$$



Small gain theorem

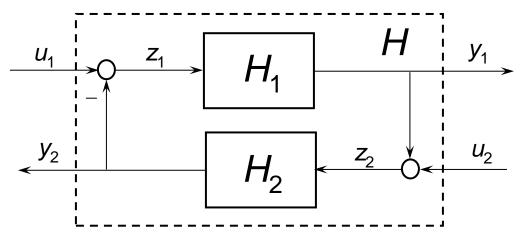
Let *H* be a well-posed causal operator obtained by connecting in feedback two causal and weakly bounded operators H_1 and H_2 . If

$$\lambda := \gamma(H_1)\gamma(H_2) < 1$$

then, *H* is weakly bounded, that is:

$$\exists \hat{\gamma}_{i1}, \hat{\gamma}_{i2}, \hat{\beta}_i \in Re^+ : \|y_i(\cdot)\| \le \hat{\gamma}_{i1} \|u_1(\cdot)\| + \hat{\gamma}_{i2} \|u_2(\cdot)\| + \hat{\beta}_i \\\forall u_1(\cdot), u_2(\cdot) \in \mathcal{L}, i = 1, 2$$

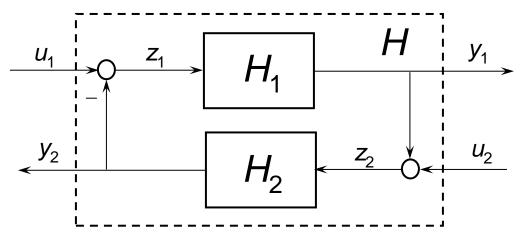
Furthermore,
$$\gamma(H_{11}) \leq \frac{\gamma(H_1)}{1-\lambda}, \ \gamma(H_{22}) \leq \frac{\gamma(H_2)}{1-\lambda}, \ \gamma(H_{12}), \gamma(H_{21}) \leq \frac{\lambda}{1-\lambda}$$



Proof (small gain theorem)

If $H_1 \in H_2$ are causal weakly bounded and H is well-posed, then $\forall u_1(\cdot), u_2(\cdot), z_1(\cdot) = u_1(\cdot) - y_2(\cdot), z_2(\cdot) = u_2(\cdot) + y_1(\cdot) \in \mathcal{L}_e, \ \forall \tau \in \Re^+$ we have that

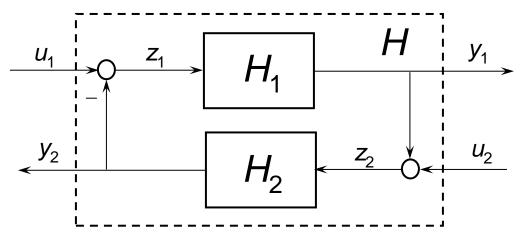
 $\|y_{1\tau}(\cdot)\| \leq \gamma_1 \|z_{1\tau}(\cdot)\| + \beta_1 \leq \gamma_1 (\|u_{1\tau}(\cdot)\| + \|y_{2\tau}(\cdot)\|) + \beta_1$



Proof (small gain theorem)

If $H_1 \in H_2$ are causal weakly bounded and H is well-posed, then $\forall u_1(\cdot), u_2(\cdot), z_1(\cdot) = u_1(\cdot) - y_2(\cdot), z_2(\cdot) = u_2(\cdot) + y_1(\cdot) \in \mathcal{L}_e, \ \forall \tau \in \Re^+$ we have that

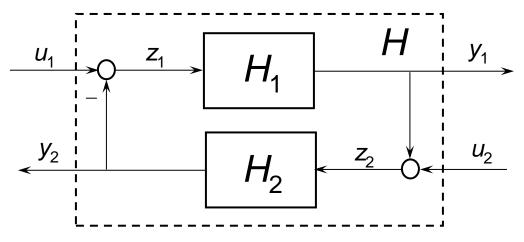
$$\begin{aligned} \|y_{1\tau}(\cdot)\| &\leq \gamma_1 \|z_{1\tau}(\cdot)\| + \beta_1 \leq \gamma_1 (\|u_{1\tau}(\cdot)\| + \|y_{2\tau}(\cdot)\|) + \beta_1 \\ &\leq \gamma_1 \|u_{1\tau}(\cdot)\| + \gamma_1 (\gamma_2 \|z_{2\tau}(\cdot)\| + \beta_2) + \beta_1 \end{aligned}$$



Proof (small gain theorem)

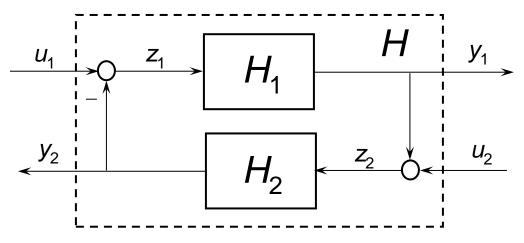
If $H_1 \in H_2$ are causal weakly bounded and H is well-posed, then $\forall u_1(\cdot), u_2(\cdot), z_1(\cdot) = u_1(\cdot) - y_2(\cdot), z_2(\cdot) = u_2(\cdot) + y_1(\cdot) \in \mathcal{L}_e, \ \forall \tau \in \Re^+$ we have that

$$\begin{aligned} \|y_{1\tau}(\cdot)\| &\leq \gamma_1 \|z_{1\tau}(\cdot)\| + \beta_1 \leq \gamma_1 (\|u_{1\tau}(\cdot)\| + \|y_{2\tau}(\cdot)\|) + \beta_1 \\ &\leq \gamma_1 \|u_{1\tau}(\cdot)\| + \gamma_1 (\gamma_2 \|z_{2\tau}(\cdot)\| + \beta_2) + \beta_1 \\ &\leq \gamma_1 \|u_{1\tau}(\cdot)\| + \gamma_1 \gamma_2 (\|u_{2\tau}(\cdot)\| + \|y_{1\tau}(\cdot)\|) + \gamma_1 \beta_2 + \beta_1 \end{aligned}$$



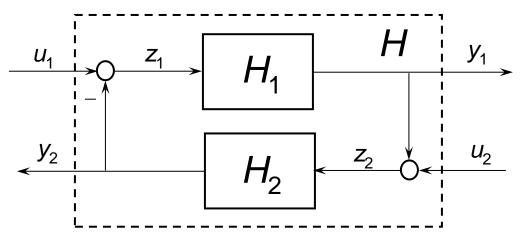
Proof (small gain theorem)

If $H_1 \in H_2$ are causal weakly bounded and H is well-posed, then $\forall u_1(\cdot), u_2(\cdot), z_1(\cdot) = u_1(\cdot) - y_2(\cdot), z_2(\cdot) = u_2(\cdot) + y_1(\cdot) \in \mathcal{L}_e, \ \forall \tau \in \Re^+$ we have that $\|y_{1\tau}(\cdot)\| \leq \gamma_1 \|u_{1\tau}(\cdot)\| + \gamma_1 \gamma_2(\|u_{2\tau}(\cdot)\| + \|y_{1\tau}(\cdot)\|) + \gamma_1 \beta_2 + \beta_1$



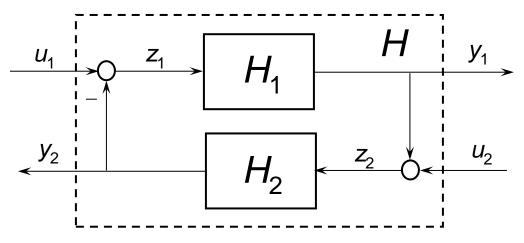
Proof (small gain theorem)

If $H_1 \in H_2$ are causal weakly bounded and H is well-posed, then $\forall u_1(\cdot), u_2(\cdot), z_1(\cdot) = u_1(\cdot) - y_2(\cdot), z_2(\cdot) = u_2(\cdot) + y_1(\cdot) \in \mathcal{L}_e, \ \forall \tau \in \Re^+$ we have that $\|y_{1\tau}(\cdot)\| \leq \gamma_1 \|u_{1\tau}(\cdot)\| + \gamma_1 \gamma_2 (\|u_{2\tau}(\cdot)\| + \|y_{1\tau}(\cdot)\|) + \gamma_1 \beta_2 + \beta_1$ Hence, if $\gamma_1 \gamma_2 < 1$ and $u_1(\cdot), u_2(\cdot) \in \mathcal{L}$ $\|y_1(\cdot)\| \leq \frac{1}{1 - \gamma_1 \gamma_2} (\gamma_1 \|u_1(\cdot)\| + \gamma_1 \gamma_2 \|u_2(\cdot)\| + \gamma_1 \beta_2 + \beta_1) \quad \forall u_1(\cdot), u_2(\cdot) \in \mathcal{L}$



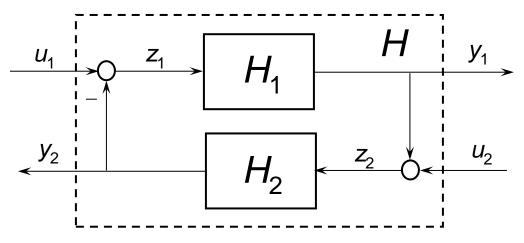
Proof (small gain theorem)

If $H_1 \in H_2$ are causal weakly bounded and H is well-posed, then $\forall u_1(\cdot), u_2(\cdot), z_1(\cdot) = u_1(\cdot) - y_2(\cdot), z_2(\cdot) = u_2(\cdot) + y_1(\cdot) \in \mathcal{L}_e, \ \forall \tau \in \Re^+$ we have that $\|y_{1\tau}(\cdot)\| \leq \gamma_1 \|u_{1\tau}(\cdot)\| + \gamma_1 \gamma_2 (\|u_{2\tau}(\cdot)\| + \|y_{1\tau}(\cdot)\|) + \gamma_1 \beta_2 + \beta_1$ Hence, if $\gamma_1 \gamma_2 < 1$ and $u_1(\cdot), u_2(\cdot) \in \mathcal{L}$ $\|y_1(\cdot)\| \leq \frac{1}{1 - \gamma_1 \gamma_2} (\gamma_1 \|u_1(\cdot)\| + \gamma_1 \gamma_2 \|u_2(\cdot)\| + \gamma_1 \beta_2 + \beta_1) \quad \forall u_1(\cdot), u_2(\cdot) \in \mathcal{L}$ Similarly for $y_2(\cdot)$



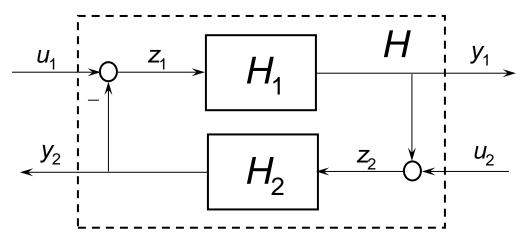
Proof (small gain theorem)

If $H_1 \in H_2$ are causal weakly bounded and H is well-posed, then $\forall u_1(\cdot), u_2(\cdot), z_1(\cdot) = u_1(\cdot) - y_2(\cdot), z_2(\cdot) = u_2(\cdot) + y_1(\cdot) \in \mathcal{L}_e, \ \forall \tau \in \Re^+$ we have that $\|y_{1\tau}(\cdot)\| \leq \gamma_1 \|u_{1\tau}(\cdot)\| + \gamma_1 \gamma_2(\|u_{2\tau}(\cdot)\| + \|y_{1\tau}(\cdot)\|) + \gamma_1 \beta_2 + \beta_1$ Hence, if $\gamma_1 \gamma_2 < 1$ and $u_1(\cdot), u_2(\cdot) \in \mathcal{L}$ $\|y_1(\cdot)\| \leq \frac{1}{1 - \gamma_1 \gamma_2} (\gamma_1 \|u_1(\cdot)\| + \gamma_1 \gamma_2 \|u_2(\cdot)\| + \gamma_1 \beta_2 + \beta_1) \quad \forall u_1(\cdot), u_2(\cdot) \in \mathcal{L}$ Similarly for $y_2(\cdot) \rightarrow H$ weakly bounded



Proof (small gain theorem)

If $H_1 \in H_2$ are causal weakly bounded and H is well-posed, then $\forall u_1(\cdot), u_2(\cdot), z_1(\cdot) = u_1(\cdot) - y_2(\cdot), z_2(\cdot) = u_2(\cdot) + y_1(\cdot) \in \mathcal{L}_e, \ \forall \tau \in \Re^+$ we have that $\|y_{1\tau}(\cdot)\| \leq \gamma_1 \|u_{1\tau}(\cdot)\| + \gamma_1 \gamma_2 (\|u_{2\tau}(\cdot)\| + \|y_{1\tau}(\cdot)\|) + \gamma_1 \beta_2 + \beta_1$ Hence, if $\gamma_1 \gamma_2 < 1$ and $u_1(\cdot), u_2(\cdot) \in \mathcal{L}$ $\|y_1(\cdot)\| \leq \frac{1}{1 - \gamma_1 \gamma_2} (\gamma_1 \|u_1(\cdot)\| + \gamma_1 \gamma_2 \|u_2(\cdot)\| + \gamma_1 \beta_2 + \beta_1) \quad \forall u_1(\cdot), u_2(\cdot) \in \mathcal{L}$ Similarly for $y_2(\cdot) \Rightarrow H$ weakly bounded Let $f_1(\gamma_1, \gamma_2) := \frac{\gamma_1}{1 - \gamma_1 \gamma_2}, \ f_2(\gamma_1, \gamma_2) := \frac{\gamma_2}{1 - \gamma_1 \gamma_2}, \ f_{12}(\gamma_1, \gamma_2) := \frac{\gamma_1 \gamma_2}{1 - \gamma_1 \gamma_2}$

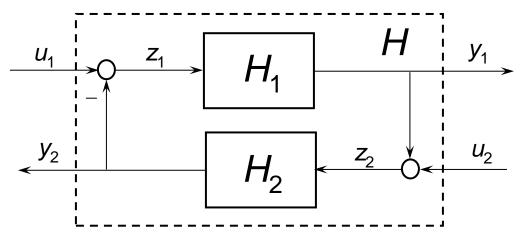


Proof (small gain theorem)

$$f_1(\gamma_1, \gamma_2) := \frac{\gamma_1}{1 - \gamma_1 \gamma_2}, \ f_2(\gamma_1, \gamma_2) := \frac{\gamma_2}{1 - \gamma_1 \gamma_2}, f_{12}(\gamma_1, \gamma_2) := \frac{\gamma_1 \gamma_2}{1 - \gamma_1 \gamma_2}$$

Are increasing function of γ_1 and γ_2 in the region where $\gamma_1\gamma_2 < 1$

$$\rightarrow \qquad \gamma(H_{11}) \leq \frac{\gamma(H_1)}{1-\lambda}, \ \gamma(H_{22}) \leq \frac{\gamma(H_2)}{1-\lambda}, \ \gamma(H_{12}), \gamma(H_{21}) \leq \frac{\lambda}{1-\lambda}$$



Small gain theorem

Let *H* be a well-posed causal operator obtained by connecting in feedback two causal and weakly bounded operators H_1 and H_2 . If

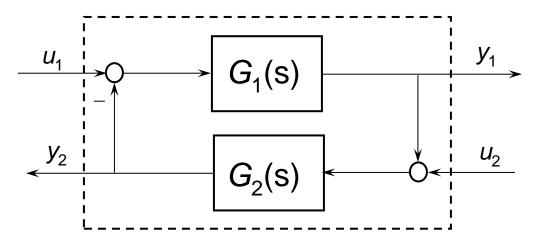
 $\lambda := \gamma(H_1)\gamma(H_2) < 1$

then, *H* is weakly bounded. Furthermore,

$$\gamma(H_{11}) \leq \frac{\gamma(H_1)}{1-\lambda}, \ \gamma(H_{22}) \leq \frac{\gamma(H_2)}{1-\lambda}, \ \gamma(H_{12}), \gamma(H_{21}) \leq \frac{\lambda}{1-\lambda}$$

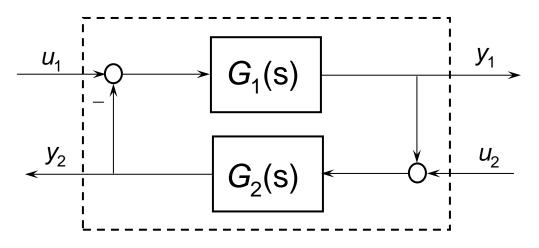
Remark: it holds irrespectively of the signs at the summation nodes.

STABILITY OF FEEDBACK LINEAR SYSTEMS



We know that the Lyapunov stability analysis for a feedback linear system can be performed by studying the Nyquist plot of $G_1(s)G_2(s)$

STABILITY OF FEEDBACK LINEAR SYSTEMS



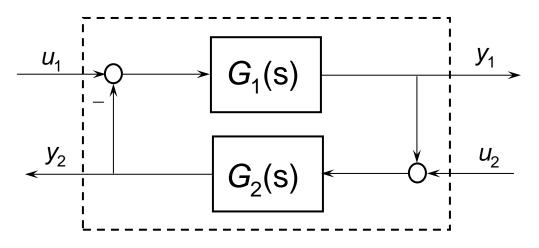
We know that the Lyapunov stability analysis for a feedback linear system can be performed by studying the Nyquist plot of $G_1(s)G_2(s)$

In particular: if the two interconnected systems are asymptotically stable, then, the feedback system is asymptotically stable if

$$\sup_{\omega \in \mathfrak{B}^+} |G_1(j\omega)G_2(j\omega)| < 1$$

i.e., no encirclements of the Nyquist plot of $G_1(s)G_2(s)$ around (-1,0).

STABILITY OF FEEDBACK LINEAR SYSTEMS



We knew that the Lyapunov stability analysis for a feedback linear system can be performed by studying the Nyquist plot of $G_1(s)G_2(s)$

In particular: if the two interconnected systems are asymptotically stable, then, the feedback system is asymptotically stable if

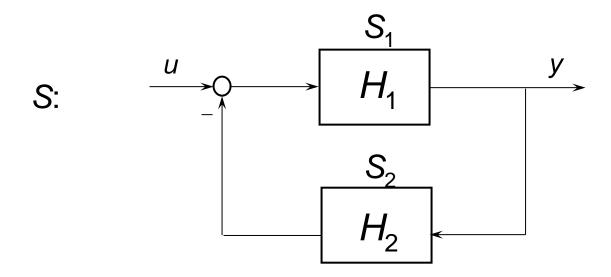
$$\sup_{\omega \in \mathfrak{R}^+} |G_1(j\omega)G_2(j\omega)| < 1$$

i.e., no encirclements of the Nyquist plot of $G_1(s)G_2(s)$ around (-1,0).

In turn, this condition is satisfied if

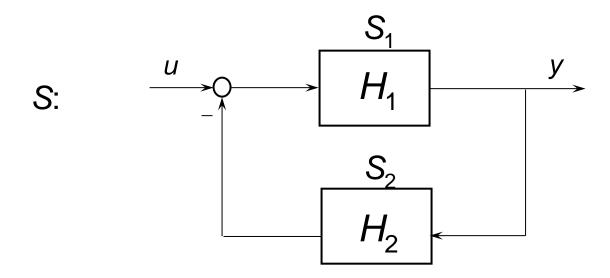
$$\left(\sup_{\omega\in\Re^+}|G_1(j\omega)|\right)\left(\sup_{\omega\in\Re^+}|G_2(j\omega)|\right)<1$$

 \rightarrow We have just shown a similar result for nonlinear systems.



 S_1 : linear time invariant dynamical system that is asymptotically stable and strictly proper with transfer function G(s)

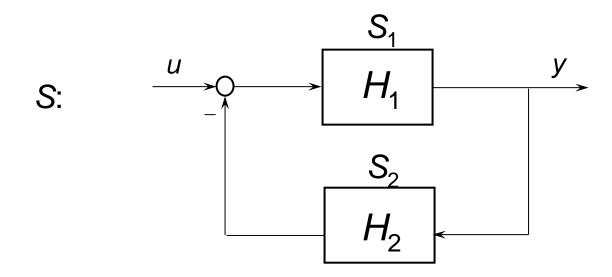
 \rightarrow causal and weakly bounded in L_p



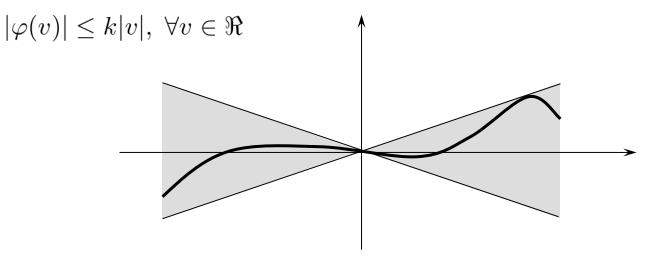
 S_1 : linear time invariant dynamical system that is asymptotically stable and strictly proper with transfer function G(s)

 \rightarrow causal and weakly bounded in L_p

$$\gamma(H_1) = \gamma^{\circ}(G_1) = \begin{cases} \max_{\substack{\omega \ge 0}} |G(j\omega)| := G_{\max}, \quad \mathcal{L} = L_2\\ \int_0^{\infty} |g(t)| dt := k_1, \qquad \mathcal{L} = L_{\infty} \end{cases}$$

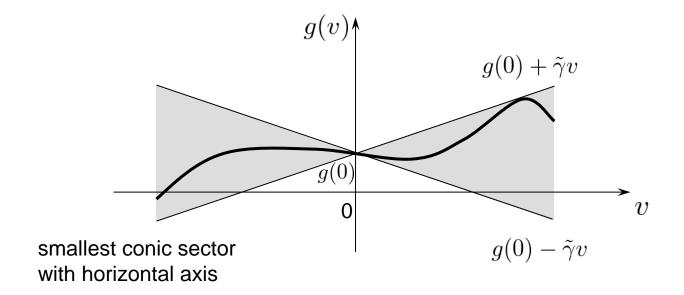


S₂: static system with sector nonlinearity $\varphi(\cdot)$ in [-k, k]

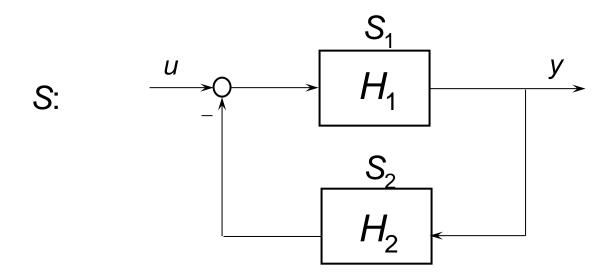


EXAMPLE 1: STATIC SYSTEM

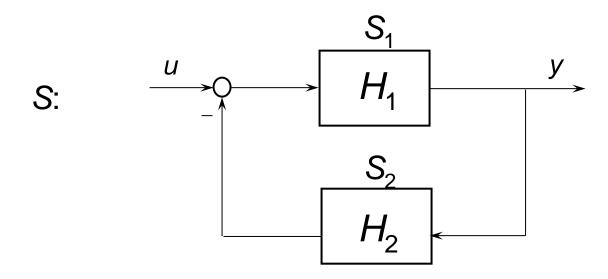
 $\begin{array}{ll} S: & y(t) = g(u(t)), \forall t \in \Re^+ \\ \text{where } g: \Re \to \Re & \text{is piecewise continuous and } g(0) \neq 0 \\ \text{Set } \tilde{g}(v) := g(v) - g(0). \text{ Suppose that there exists some finite} \\ \tilde{\gamma} := \inf\{k \in \Re^+ : \ |\tilde{g}(v)| \leq k|v|, \forall v \in \Re\} \end{array}$



Static system whose characteristic belongs to a conic sector



- S₂: static system with sector nonlinearity $\varphi(\cdot)$ in [-*k*, *k*] $|\varphi(v)| \le k|v|, \ \forall v \in \Re$
- $\mathcal{L} = L_{\infty} \to \gamma(H_2) \le \gamma^{\circ}(H_2) = \tilde{\gamma} \le k$



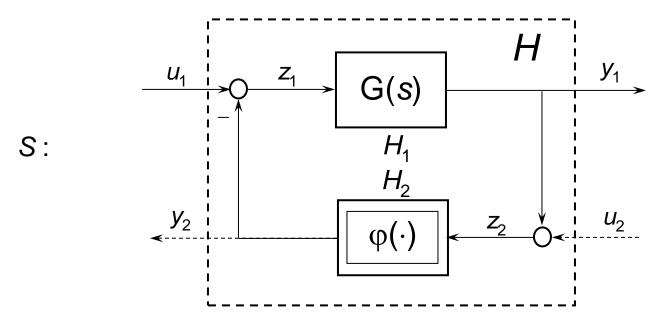
S₂: static system with sector nonlinearity $\varphi(\cdot)$ in [-*k*, *k*] $|\varphi(v)| \le k|v|, \ \forall v \in \Re$

•
$$\mathcal{L} = L_{\infty} \to \gamma(H_2) \le \gamma^{\circ}(H_2) = \tilde{\gamma} \le k$$

•
$$\mathcal{L} = L_2 \to \gamma(H_2) \le k$$

because
 $\|H_2(u(\cdot))\|_2^2 = \int_0^\infty \varphi^2(u(t))dt \le \int_0^\infty k^2 u^2(t)dt = k^2 \|u(\cdot)\|_2^2, \ \forall u(\cdot) \in L_2$

LUR'E SYSTEM: SMALL GAIN THEOREM



System S (the associated operator H):

• is L₂-stable (for any sector nonlinearity $\varphi(\cdot)$ in [-k, k]) if

$$kG_{\max} < 1$$

• is L_{∞} -stable (for any sector nonlinearity $\varphi(\cdot)$ in [-k, k]) if

 $kk_1 < 1$ $(k_1 := ||g(\cdot)||_1)$

S: G(s) $\varphi(\cdot)$

Autonomous Lur'e system: absolute stability in sector [-k, k]

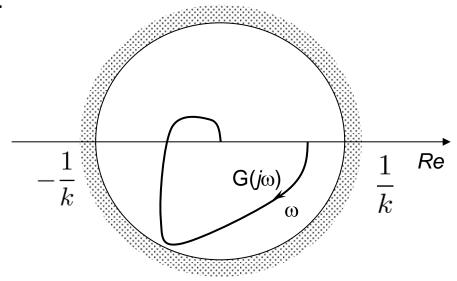
Necessary condition: S_1 asymptotically stable

S: G(s) $\varphi(\cdot)$ $\varphi(\cdot)$

Autonomous Lur'e system: absolute stability in sector [-k, k]

Necessary condition: S₁ asymptotically stable

Sufficient condition (circle criterion):



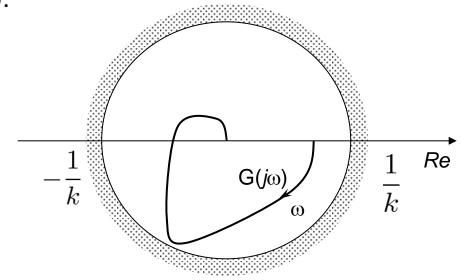
S: G(s) $\varphi(\cdot)$ $\varphi(\cdot)$

Autonomous Lur'e system: absolute stability in sector [-k, k]

Necessary condition: S₁ asymptotically stable

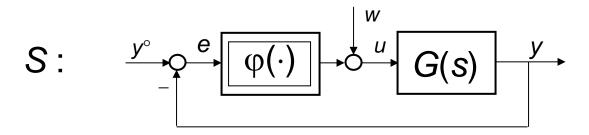
Sufficient condition (circle criterion):

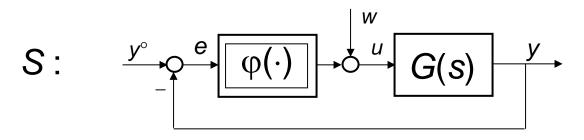
$$G_{\max} < \frac{1}{k} \Leftrightarrow kG_{\max} < 1$$



LUR'E SYSTEM: L₂ VERSUS ABSOLUTE STABILITY

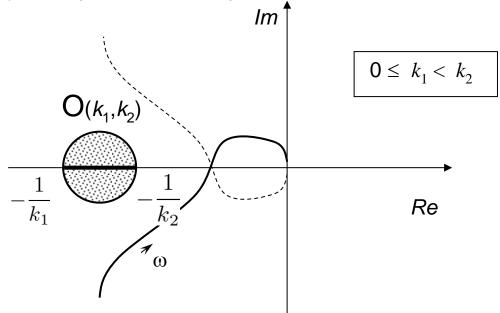
• The connection between L₂-stability of a time-invariant Lur'e system and absolute stability of the same system with inputs sets to zero can be further strengthened by considering a generic sector [k_1 , k_2], $k_1 < k_2$ and formulating a Circle criterion for L₂ stability

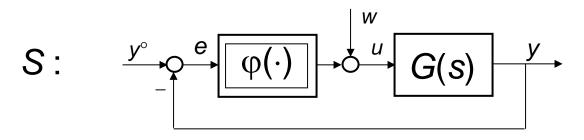




Theorem (Circle criterion for L₂ stability of a Lur'e system)

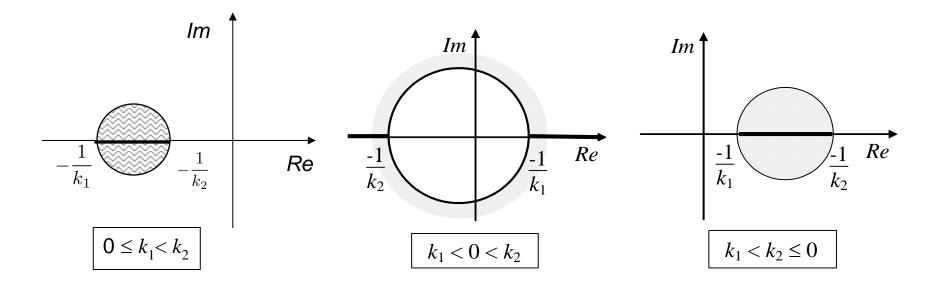
System S is L_2 -stable for any $\varphi(\cdot) \in \Phi_{[k_1,k_2]}$ if the number of encirclements of G(s) Nyquist plot around O(k₁,k₂) is equal to the number of poles of G(s) with positive real part.

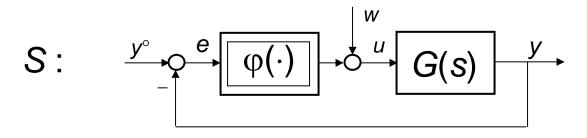


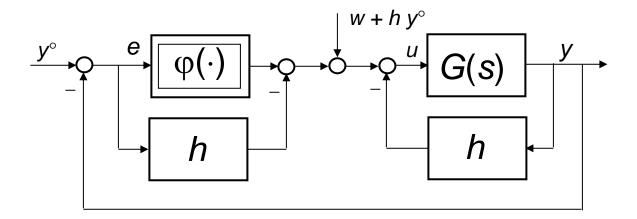


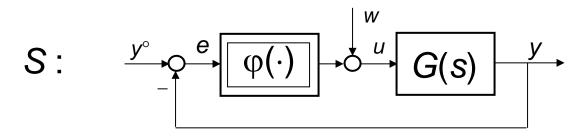
Theorem (Circle criterion for L₂ stability of a Lur'e system)

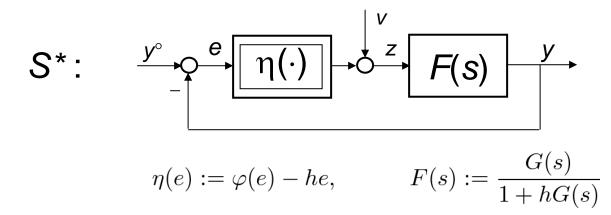
System S is L_2 -stable for any $\varphi(\cdot) \in \Phi_{[k_1,k_2]}$ if the number of encirclements of G(s) Nyquist plot around O(k₁,k₂) is equal to the number of poles of G(s) with positive real part.

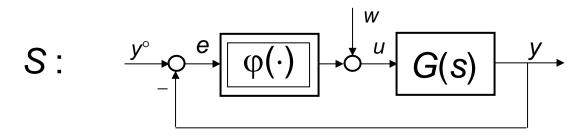


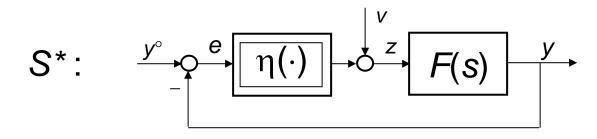


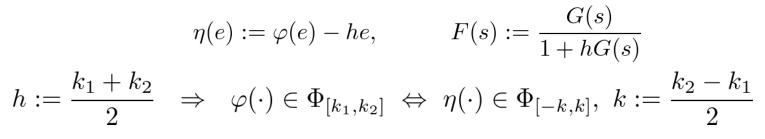


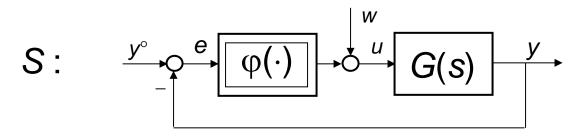


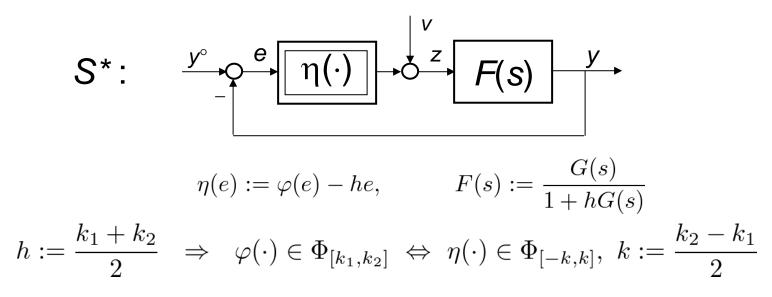




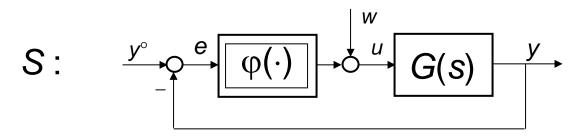


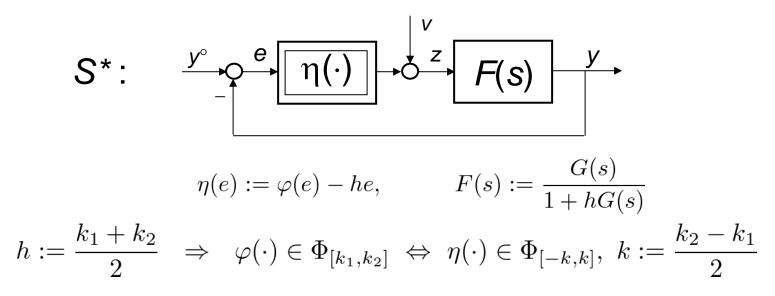






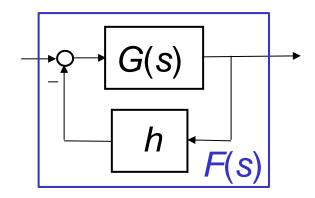
Remark: System S is L_2 -stable in sector $[k_1, k_2]$ if and only if system S^{*} is L_2 -stable in sector [-k, k]



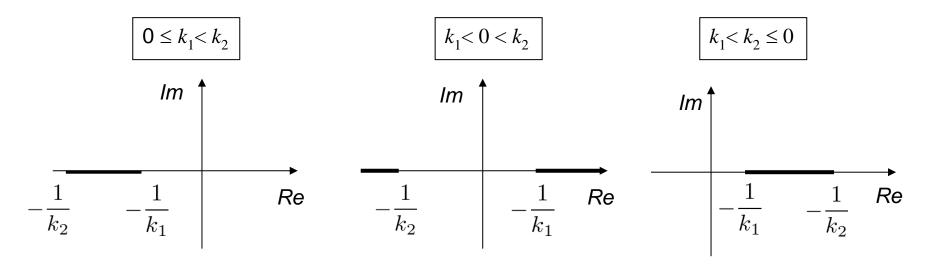


Remark: System S is L_2 -stable in sector $[k_1, k_2]$ if and only if system S^{*} is L_2 -stable in sector [-k, k]

→ system with *F*(*s*) asymptotically stable and $F_{\text{max}} < \frac{1}{k}$

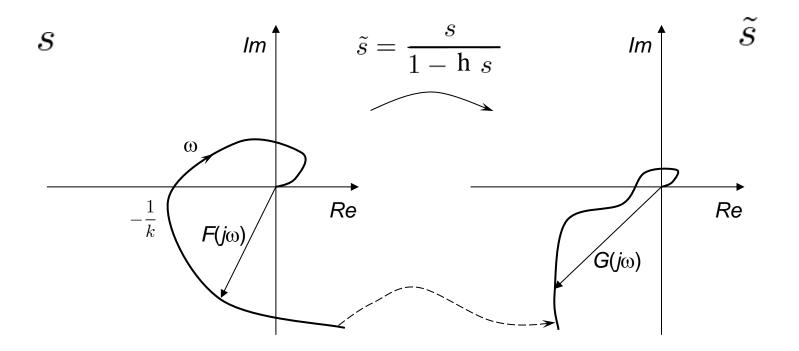


The poles of *F*(*s*) have negative real part since $h = \frac{k_1 + k_2}{2} \in [k_1, k_2]$ and G(s) Nyquist plot encircles *I*(k_1, k_2) as many times as the number of poles of G(s) with positive real part



O(k_1, k_2) is the image through the mapping F(s) $\rightarrow G(s) = \frac{F(s)}{1 - h F(s)}$

of the region external to the circle of radius 1/k and center in the origin



O(k_1 , k_2) is the image through the mapping F(s) $\rightarrow G(s) = \frac{F(s)}{1 - h F(s)}$

of the region external to the circle of radius 1/k and center in the origin

Then, if G(s) Nyquist plot does not inteserct O(k_1 , k_2), F(s) Nyquist plot is within that circle, i.e.,

$$F_{\max} < \frac{1}{k}$$

which concludes the proof.