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Remarks  
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Remark:  
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Given a linear time invariant dynamical system S 

S asymptotically stable  the operator H associated with S is Lp-

stable for any p  (0,] 

H is Lp-stable, p  (0,]   S is asymptotically stable if and only if ts 

non-observable and non-reachable parts are asymptotically stable 
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Small gain theorem  
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We know that the Lyapunov stability analysis for a feedback linear 
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LUR’E SYSTEM: SMALL GAIN THEOREM 

System S (the associated operator H): 
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LUR’E SYSTEM: L2 VERSUS ABSOLUTE STABILITY 

• The connection between L2-stability of a time-invariant Lur’e 

system and absolute stability of the same system with 

inputs sets to zero can be further strengthened by 

considering a generic sector [k1, k2], k1 < k2  and formulating 

a Circle criterion for L2 stability 
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O(k1, k2) is the image through the mapping  

          F(s)  

of the region external to the circle of radius 1/k and center in the origin 

Then, if G(s) Nyquist plot does not inteserct O(k1, k2), F(s) Nyquist plot is 

within that circle, i.e.,  

 

 

which concludes the proof.  
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