Lyapunov stability

ORDINARY DIFFERENTIAL EQUATIONS

An ordinary differential equation is a mathematical model of a
continuous state continuous time system:

x(r) = f(x(2))

X =R" = state space
f: R — RN = vector field (assigns a “velocity” vector to each x)

Given an initial value x, € X,
an execution (solution in the sense of Caratheodory) over
the time interval [0,T) is a function x: [0,T) — &" such that:

* X(0) =xq
* X is continuous and piecewise differentiable
o x(t) = x(0)+ [§ f(x(2))dr, ¥ € [0,T)




ODE SOLUTION: WELL-POSEDNESS

x(t) = f(x(1)), x(0) =xg

Theorem [global existence and uniqueness]
If f: k" — R"is globally Lipschitz continuous, then V x, there
exists a single solution with x(0)=x, defined on [0,00).

Def. f: " — R"is globally Lipschitz continuous, if there
exists a constant L such that

[[FO<)-FOI| < L [[Xg-Xoll, ¥ Xg,%, € RO

STABILITY OF CONTINUOUS SYSTEMS
x(1) = f(x(1))
with f: " — R" globally Lipschitz continuous

Definition (equilibrium):
Xe € R" for which f(x,)=0




Definition (stable equilibrium):
Ve>0,36 >0 |lxg—xe|| <8 = |[x(O)]- x| <&,vr >0

VIl =/ V%+V%+~'+v,21 \ execution starting

from x(0)=x,

Graphically:  z» /V perturbed motion

t

equilibrium motion

| small perturbations lead to small changes in behavior

Definition (asymptotically stable equilibrium):
VE>0,36 >0 ||xg—xe|| <6 — [Jx(t) —xe|| < &,Vt>0

and & can be chosen so that limy_c(x(f) —x¢) =0

Graphically:  z, /V perturbed motion
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small perturbations lead to small changes in behavior
and are re-absorbed, in the long run




EXAMPLE: PENDULUM

x1=20
X =0
O\ | X1 =x

. 8 . o
=7 sin(x) — X
friction
coefficient (a.)

EXAMPLE: PENDULUM

x1=20
Xy =20
X1 =x2

. g . a
=7 sin(x) — X

T
Xe:|:0

unstable equilibrium




EXAMPLE: PENDULUM

x1=20
Xy =20
X1 =x2

. g . a
=7 sin(x) — X

Xe = { 8 ] as. stable equilibrium

EXAMPLE: PENDULUM




Let x, be asymptotically stable.

Definition (domain of attraction):
The domain of attraction of x, is the set of x, such that

limy; oo (x(2)| — xe) =0

execution starting
from x(0)=x,

Definition (globally asymptotically stable equilibrium):

X IS globally asymptotically stable (GAS) if its domain of
attraction is the whole state space R"

EXAMPLE: PENDULUM

x1=20
Xy =20
X1 =x2

. g . a
=7 sin(x) — X

®

Xe = { 8 ] as. stable equilibrium

small perturbations are
absorbed, not all
perturbations - not GAS




Let x, be asymptotically stable.

Definition (exponential stability):
X IS exponentially stable if 3 o, 3, p >0 such that

lxo = xell < & = [|x(r) = xell < @tllxo —xelle P!, Wi >0

STABILITY OF CONTINUOUS SYSTEMS
x(r) = f(x(2))
with f: " — R" globally Lipschitz continuous
Definition (equilibrium):

Xe € R" for which f(x,)=0

Without loss of generality we suppose that

Xe =0
if not, then z := x -x, — dz/dt = g(z), 9(2) := f(z+x,) (g(0) = 0)




STABILITY OF CONTINUOUS SYSTEMS

with f: R" — R" globally Lipschitz continuous
How to prove stability?
find a function V: R" — R such that
V(0) = 0 and V(x) >0, forall x # 0
V(x) is decreasing along the executions of the system

V(X) =3
V(x) =2

X(t)

STABILITY OF CONTINUOUS SYSTEMS

behavior of V along the
execution x(t): V(t): = V(x(t))

=L
@%a

candidate function V(x)

execution x(t)

Advantage with respect to exhaustive check of all executions?




STABILITY OF CONTINUOUS SYSTEMS

X(t) = f(x(2)), f(0)=0 1)
with f: ®" — R" globally Lipschitz continuous f(x) = fzs(x)
fn(x)

V: ®R" — R continuously differentiable (C?) function

Rate of change of V along the execution of the ODE system:
Loy dV(x(r) &9V, Eov, o 9V
V(x) - dl - l; &X,’x’ - l; axiﬁ(x) - ax (x) f(X)

(Lie derivative of V with respect to f) %—‘; = [av o av]

/

0x1 9xy """ Oxp
gradient vector

STABILITY OF CONTINUOUS SYSTEMS

V: " — R continuously differentiable (C*) function

Rate of change of V along the execution of the ODE system:
Loy dVx(n) GOV, GV, o dV
V(x) - dl - l; &X,’x’ - l; axiﬁ(x) - ax (x) f(X)

(Lie derivative of V with respect to f) %—‘; = [av o av]

/

0x1 9xy """ Oxp
gradient vector

No need to solve the ODE for evaluating if V(x) decreases
along the executions of the system




LYAPUNOV STABILITY

Theorem (Lyapunov stability Theorem):

Let x, = 0 be an equilibrium for the system and DC R" an open
set containing x, = 0.

If V: D — Ris a C! function such that

V(0)=0 y .
V positive definite on D
V(x)>0,Vx e D\ {0}
V(x) <0,vxeD V non increasing along
system executions in D
Then, x, is stable. (negative semidefinite)

EXAMPLE: PENDULUM

x1=20
Xy =20
O\ | X1 =x
Xy = —=sin(xy) — —xp
friction 0
coefficient (o) Xe = { 0 }

1
V(x):=mgl(1—cos(xy))+ me%l2 >(  energy function

V(x) = [mglsin(x;) mlx;) - { ;1 ] = —Ocl2x% <0
2
X, Stable




LYAPUNOV STABILITY

Theorem (Lyapunov stability Theorem):

Let x, = 0 be an equilibrium for the system and DC R" an open
set containing x, = 0.

If V: D — R is a C* function such that
V(0)=0
V(x)>0,Vx e D\ {0}
V(x) <0,VxeD
Then, x, is stable.
If it holds also that
V(x) <0,Vxe D\ {0}
Then, x, is asymptotically stable (AS)

LYAPUNOV GAS THEOREM

Theorem (Barbashin-Krasovski Theorem):
Let x, = 0 be an equilibrium for the system.

If V: " — R is a C function such that

V(0)=0

V(x) >0, Vxe R\ {0}

. , V decreasing along

V(x) <0,vxeR" \ {O} system executions in "
(negative definite)

V positive definite on R"

lim V(x) =00 V radially unbounded

(]| —ee

Then, x, is globally asymptotically stable (GAS).




STABILITY OF LINEAR CONTINUOUS SYSTEMS
x(t) = Ax(r)
* X, = 0is an equilibrium for the system
x(t) = e4'x(0),1 >0
A0

» the elements of matrix eAt are linear combinations of
e At ter@t | tkeAt | where A(A) is an eigenvalue of A

STABILITY OF LINEAR CONTINUOUS SYSTEMS
x(t) = Ax(r)

* X, = 0is an equilibrium for the system
x(t) = e4'x(0),1 >0

Al 0

* X, =0 is asymptotically stable if and only if A is Hurwitz (all
eigenvalues with real part <0)

« asymptotic stability = GAS




STABILITY OF LINEAR CONTINUOUS SYSTEMS
x(t) = Ax(r)
Xe = 0 is an equilibrium for the system
x(t) = e4'x(0),1 >0
A0

X, =0 is asymptotically stable if and only if A is Hurwitz (all
eigenvalues with real part <0)

asymptotic stability = GAS

Alternative characterization...

STABILITY OF LINEAR CONTINUOUS SYSTEMS

x(t) = Ax(r)

Theorem (necessary and sufficient condition):

The equilibrium point x, =0 is asymptotically stable if and only
if for all matrices Q = QT positive definite (Q>0) the

ATP+PA = -Q Lyapunov equation

has a unique solution P=PT >0.

Remarks:

Q positive definite (Q>0) iff xTQx >0 for all x # 0

Q positive semidefinite (Q> 0) iff xTQx > 0 for all x and
X" Q x=0forsomex=0




STABILITY OF LINEAR CONTINUOUS SYSTEMS
x(t) = Ax(r)

Theorem (necessary and sufficient condition):

The equilibrium point x, =0 is asymptotically stable if and only
if for all matrices Q = QT positive definite (Q>0) the

ATP+PA =-Q Lyapunov equation

has a unique solution P=PT >0.
Proof.
(if) V(x) =xT P x is a Lyapunov function
V(x) =T Px+xT Px
=xT(ATP+PA)x = —xTQx < 0,Vx #£0

STABILITY OF LINEAR CONTINUOUS SYSTEMS
x(t) = Ax(r)

Theorem (necessary and sufficient condition):

The equilibrium point x, =0 is asymptotically stable if and only
if for all matrices Q = QT positive definite (Q>0) the

ATP+PA = -Q Lyapunov equation

has a unique solution P=PT >0.
Proof.
LT
(only if) Consider P = /0 A 1M dr

ATP 4 PA= /0 AT AT QM gt + /O A0 Adi
:/ L ATt 9 G — g
0 dt




STABILITY OF LINEAR CONTINUOUS SYSTEMS
x(t) = Ax(r)

Theorem (necessary and sufficient condition):

The equilibrium point x, =0 is asymptotically stable if and only
if for all matrices Q = QT positive definite (Q>0) the

ATP+PA =-Q Lyapunov equation

has a unique solution P=PT >0.
Proof.
LT
(only if) Consider P = /0 A0 dt

P = PT and P>0 easy to show

P unique can be proven by contradiction

STABILITY OF LINEAR CONTINUOUS SYSTEMS
x(t) = Ax(r)

Remarks: for a linear system

+ existence of a (quadratic) Lyapunov function V(x) =xT P x is a
necessary and sufficient condition for asymptotic stability

* itis easy to compute a Lyapunov function since the Lyapunov
equation

ATP+PA = -Q
is a linear algebraic equation




STABILITY OF LINEAR CONTINUOUS SYSTEMS
x(t) = Ax(r)

Theorem (exponential stability):
Let the equilibrium point x, =0 be asymptotically stable. Then,
the rate of convergence to x, =0 is exponential:

(1] < e x|, £ > 0

for all x(0) = x, € R", where A, € (0, min; |[Re{A;(A)}|) and n >0
is an appropriate constant.

STABILITY OF LINEAR CONTINUOUS SYSTEMS
x(t) = Ax(r)

Theorem (exponential stability):
Let the equilibrium point x, =0 be asymptotically stable. Then,
the rate of convergence to x, =0 is exponential:

1x(1)]| < e 2 x|, > 0

for all x(0) = x, € R", where A, e|(0, min; |Re{xi(A)}|)|and u >0
is an appropriate constant.

Im

eigenvalues of A 0

o—6

‘ Re

of___-__

67
yd




STABILITY OF LINEAR CONTINUOUS SYSTEMS
x(t) = Ax(r)

Theorem (exponential stability):

Let the equilibrium point x, =0 be asymptotically stable. Then,
the rate of convergence to x, =0 is exponential:

(1] < e x|, £ > 0
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STABILITY OF LINEAR CONTINUOUS SYSTEMS
x(t) = Ax(r)

Theorem (exponential stability):

Let the equilibrium point x, =0 be asymptotically stable. Then,
the rate of convergence to x, =0 is exponential:

1x(1)]| < e 2 x|, > 0

for all x(0) = x, € R", where A, € (0, min; |Re{A;,(A)}|) and n >0
is an appropriate constant.

Remark:  [[x(1)]| = [e*xo]l < u;—%fuxou, £ >0, Vxg
t
M) = supy 0 128 < oo 1> 0




STABILITY OF LINEAR CONTINUOUS SYSTEMS
x(t) = Ax(r)

Proof (exponential stability):
A + A | is Hurwitz (eigenvalues are equal to A(A) + A.)
Then, there exists P = PT >0 such that
(A+2)TP+P (A+Ayl) <0
which leads to
X(O)TTAT P + P AJX(t) < -2 4 X(t)T P x(t)
Define V(x) = xT P x, then
V(x(1)) < =229V (x(r))

from which
V(1)) < eV (xp)

STABILITY OF LINEAR CONTINUOUS SYSTEMS
x(t) = Ax(r)
(cont'd) Proof (exponential stability):

X Ain(P)Mx <V (x) = xT Px < xT Amax (P)1 x
Amin(P) () |2 <V (x(1)) < 220V (x) < 220 Amax (P) |0 ||

thus finally leading to

lmaX(P)e—/loq
A'min(P) '

(O]l < - %o




STABILITY OF LINEAR CONTINUOUS SYSTEMS
x(t) = Ax(r)

* X, = 0is an equilibrium for the system

* X, =0 is asymptotically stable if and only if A is Hurwitz (all
eigenvalues with real part <0)

« asymptotic stability = GAS = exponential stability = GES




