
Lyapunov stability 

ORDINARY DIFFERENTIAL EQUATIONS 

An ordinary differential equation is a mathematical model of a 

continuous state continuous time system: 

     

 

 X = <n  ´ state space 

 f: <n ! <n     ´ vector field (assigns a “velocity” vector to each x) 
 

 

Given an initial value x0 2 X,  

an execution (solution in the sense of Caratheodory) over 
the time interval [0,T) is a function x: [0,T) ! <n such that: 

• x(0) = x0 

• x is continuous and piecewise differentiable 

•    



ODE SOLUTION: WELL-POSEDNESS 

Theorem [global existence and uniqueness] 
If f: <n ! <n is globally Lipschitz continuous, then 8 x0 there 

exists a single solution with x(0)=x0 defined on [0,1). 

 

Def.  f: <n ! <n is globally Lipschitz continuous, if there 

 exists  a constant L such that  

  ||f(x1)-f(x2)|| · L ||x1-x2||, 8 x1,x2 2 <n   

 

STABILITY OF CONTINUOUS SYSTEMS 

with f: <n ! <n globally Lipschitz continuous 
 

Definition (equilibrium):  

 xe 2 <n for which f(xe)=0 

 
 



  

Definition (stable equilibrium):  

 

  
 

Graphically: 
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Definition (asymptotically stable equilibrium):  

 

 and d can be chosen so that 
  

Graphically: 
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small perturbations lead to small changes in behavior 

and are re-absorbed, in the long run 
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Let xe be asymptotically stable.  
 

Definition (domain of attraction): 

 The domain of attraction of xe is the set of x0 such that  

 

 

 

Definition (globally asymptotically stable equilibrium): 

 xe is globally asymptotically stable (GAS) if its domain of 
attraction is the whole state space <n 

 

 

execution starting  

from x(0)=x0 

EXAMPLE: PENDULUM 
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Let xe be asymptotically stable.  
 

Definition (exponential stability): 

 xe is exponentially stable if 9 a, d,  >0 such that   

 

 

STABILITY OF CONTINUOUS SYSTEMS 

with f: <n ! <n globally Lipschitz continuous 
 

Definition (equilibrium):  

 xe 2 <n for which f(xe)=0 

 

Without loss of generality we suppose that 

 xe = 0 

if not, then z := x -xe !  dz/dt = g(z), g(z) := f(z+xe) (g(0) = 0) 

 
 



STABILITY OF CONTINUOUS SYSTEMS 

with f: <n ! <n globally Lipschitz continuous  

How to prove stability? 

 find a function V: <n ! < such that 

  V(0) = 0 and V(x) >0, for all x  0 

  V(x) is decreasing along the executions of the system  

  

 

  

  

V(x) = 3 

V(x) = 2 

x(t) 

STABILITY OF CONTINUOUS SYSTEMS 

execution x(t) 

candidate function V(x) 

behavior of V along the  

execution x(t): V(t): = V(x(t)) 

Advantage with respect to exhaustive check of all executions? 



with f: <n ! <n globally Lipschitz continuous  
 

V: <n ! < continuously differentiable (C1) function 
 

Rate of change of V along the execution of  the ODE system: 

  

 

(Lie derivative of V with respect to f) 

STABILITY OF CONTINUOUS SYSTEMS 

gradient vector 

with f: <n ! <n globally Lipschitz continuous  
 

V: <n ! < continuously differentiable (C1) function 
 

Rate of change of V along the execution of  the ODE system: 

  

 

(Lie derivative of V with respect to f) 

STABILITY OF CONTINUOUS SYSTEMS 

gradient vector 

No need to solve the ODE for evaluating if V(x) decreases  

along the executions of  the system 



LYAPUNOV STABILITY 

Theorem (Lyapunov stability Theorem): 

Let xe = 0 be an equilibrium for the system and D½ <n an open 

set containing xe = 0.  

If V: D ! < is a C1 function such that    

 

 

 

Then, xe is stable.  

V positive definite on D 

V non increasing along  

system executions in D 

(negative  semidefinite) 

EXAMPLE: PENDULUM 
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LYAPUNOV STABILITY 

Theorem (Lyapunov stability Theorem): 

Let xe = 0 be an equilibrium for the system and D½ <n an open 

set containing xe = 0.  

If V: D ! < is a C1 function such that    

 

 

 

Then, xe is stable.  

If it holds also that 

 

Then, xe is asymptotically stable (AS) 

LYAPUNOV GAS THEOREM 

Theorem (Barbashin-Krasovski Theorem): 

Let xe = 0 be an equilibrium for the system.  

 

If V: <n ! < is a C1 function such that    

 

 

 

 

 

 

Then, xe is globally asymptotically stable (GAS).  

V positive definite on <n 

V decreasing along  
system executions in <n  

(negative definite) 

V radially unbounded 



STABILITY OF LINEAR CONTINUOUS SYSTEMS 

 

 

 

• xe = 0 is an equilibrium for the system  

 

 

 

• the elements of matrix eAt are linear combinations of 

e(A)t,tei(A)t,… tke(A)t  , where (A) is an eigenvalue of A 

STABILITY OF LINEAR CONTINUOUS SYSTEMS 

 

 

 

• xe = 0 is an equilibrium for the system  

 

 

 

• xe =0 is asymptotically stable if and only if A is Hurwitz (all 

eigenvalues with real part <0)  

• asymptotic stability  GAS 

 



STABILITY OF LINEAR CONTINUOUS SYSTEMS 

 

 

 

• xe = 0 is an equilibrium for the system  

 

 

 

• xe =0 is asymptotically stable if and only if A is Hurwitz (all 

eigenvalues with real part <0)  

• asymptotic stability  GAS 

 

Alternative characterization…  

STABILITY OF LINEAR CONTINUOUS SYSTEMS 

 

 

Theorem (necessary and sufficient condition): 

 The equilibrium point xe =0 is asymptotically stable if and only 

if for all matrices Q = QT positive definite (Q>0) the  

 ATP+PA = -Q 

 has a unique solution P=PT >0. 

 

Remarks:  

Q positive definite (Q>0) iff xTQx >0 for all x  0 

 Q positive semidefinite (Q¸ 0) iff xTQx ¸ 0 for all x and  

xT Q x = 0 for some x  0  

  

Lyapunov equation 



STABILITY OF LINEAR CONTINUOUS SYSTEMS 

 

 

Theorem (necessary and sufficient condition): 

 The equilibrium point xe =0 is asymptotically stable if and only 

if for all matrices Q = QT positive definite (Q>0) the  

 ATP+PA = -Q 

 has a unique solution P=PT >0. 

Proof.  

(if) V(x) =xT P x  is a Lyapunov function 

 

Lyapunov equation 

STABILITY OF LINEAR CONTINUOUS SYSTEMS 

 

 

Theorem (necessary and sufficient condition): 

 The equilibrium point xe =0 is asymptotically stable if and only 

if for all matrices Q = QT positive definite (Q>0) the  

 ATP+PA = -Q 

 has a unique solution P=PT >0. 

Proof.  

(only if) Consider  

  

Lyapunov equation 



STABILITY OF LINEAR CONTINUOUS SYSTEMS 

 

 

Theorem (necessary and sufficient condition): 

 The equilibrium point xe =0 is asymptotically stable if and only 

if for all matrices Q = QT positive definite (Q>0) the  

 ATP+PA = -Q 

 has a unique solution P=PT >0. 

Proof.  

(only if) Consider  

 

  P = PT and P>0 easy to show 

  P unique can be proven by contradiction 

Lyapunov equation 

STABILITY OF LINEAR CONTINUOUS SYSTEMS 

 

 

Remarks: for a linear system  

• existence of a (quadratic) Lyapunov function V(x) =xT P x is a 

necessary and sufficient condition for asymptotic stability 

• it is easy to compute a Lyapunov function since the Lyapunov 

equation  

ATP+PA = -Q 

 is a linear algebraic equation  

 



STABILITY OF LINEAR CONTINUOUS SYSTEMS 

 

 

Theorem (exponential stability): 

 Let the equilibrium point xe =0 be asymptotically stable. Then, 

the rate of convergence to xe =0 is exponential: 

 

 

 for all x(0) = x0 2 <n, where  0 2 (0, mini |Re{i(A)}|) and  >0 

is an appropriate constant.  

 

   

STABILITY OF LINEAR CONTINUOUS SYSTEMS 

 

 

Theorem (exponential stability): 

 Let the equilibrium point xe =0 be asymptotically stable. Then, 

the rate of convergence to xe =0 is exponential: 

 

 

 for all x(0) = x0 2 <n, where  0 2 (0, mini |Re{i(A)}|) and  >0 

is an appropriate constant.  
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Theorem (exponential stability): 

 Let the equilibrium point xe =0 be asymptotically stable. Then, 

the rate of convergence to xe =0 is exponential: 
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Theorem (exponential stability): 

 Let the equilibrium point xe =0 be asymptotically stable. Then, 

the rate of convergence to xe =0 is exponential: 

 

 

 for all x(0) = x0 2 <n, where  0 2 (0, mini |Re{i(A)}|) and  >0 

is an appropriate constant.  

 

Remark: 



STABILITY OF LINEAR CONTINUOUS SYSTEMS 

 

 

Proof (exponential stability):  

A + 0 I is Hurwitz (eigenvalues are equal to (A) + 0) 

Then, there exists P = PT >0 such that   

(A + 0I)
T P + P (A + 0I) <0 

which leads to 

x(t)T[AT P + P A]x(t) < - 2 0 x(t)T P x(t)  

Define V(x) = xT P x, then  

 

from which   

STABILITY OF LINEAR CONTINUOUS SYSTEMS 

 

 

(cont’d) Proof (exponential stability):  

 

 

 

 

 

thus finally leading to 

 

  



STABILITY OF LINEAR CONTINUOUS SYSTEMS 

 

 

 

• xe = 0 is an equilibrium for the system 

• xe =0 is asymptotically stable if and only if A is Hurwitz (all 

eigenvalues with real part <0)  

• asymptotic stability  GAS   exponential stability  GES 

 

 


