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agent > node i
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Modeling

N, = {1,5}

agent > node i
agent j communicates with agenti — edge e = (J, i)

Graph modeling the agents communication: G = (V,E)
V={12,..,m} E={(,i): j communicates withi} S V X V

Neighbors of agent i:

N; = {j: (j,i) € E}




Path

agent > node i
agent j communicates with agenti — edge e = (J, i)

Graph modeling the agents communication: G = (V,E)
Path is a subgraph m = (V, E;) € G with
VTC - {ill iz, ey lk} cV Eﬂ,' - {(ill iz), (iz, i3), ey (ik—l' lk)} cE




Path

@ @ example of a path of length 2

@ & ©

agent > node i
agent j communicates with agenti — edge e = (J, i)

Graph modeling the agents communication: G = (V,E)
Path is a subgraph m = (V, E;) € G with
VTC - {ill iz, ey lk} cV Eﬂ,' - {(ill iz), (iz, i3), ey (ik—l' lk)} cE




Path

@ @ example of a path of length 5

@ 6

agent > node i
agent j communicates with agenti — edge e = (J, i)

Graph modeling the agents communication: G = (V,E)
Path is a subgraph m = (V, E;) € G with
VTC - {ill iz, ey lk} cV Eﬂ,' - {(ill iz), (iz, i3), ey (ik—l' lk)} cE




Path

example of a path of length 5
<. \:

shortest path defines the

. . @ distance between two nodes

agent > node i
agent j communicates with agenti — edge e = (J, i)

Graph modeling the agents communication: G = (V,E)
Path is a subgraph m = (V, E;) € G with
VTC - {ill iz, ey lk} cV Eﬂ,' - {(ill iz), (iz, i3), ey (ik—l' lk)} cE




| Undirected graph and connectivity

graph G = (V,E) is undirected if
GDEE=(i,j)€EE
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| Undirected graph and connectivity

graph G = (V,E) is undirected if
GDEE=(i,j)€EE

an undirected graph is connected,
if there exists a path m between any two distinct nodes

diameter of a connected graph is the maximum distance between two nodes




| Directed graph and connectivity

graph G = (V,E) is directed if
3(j,i) € E suchthat (i,j) € E
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if the undirected graph obtained by making all arches bidirectional is connected




| Directed graph and connectivity

graph G = (V,E) is directed if
3(j,i) € E suchthat (i,j) € E

a directed graph is strongly connected,
if there exists a directed path m between any two distinct nodes

¥

a directed graph is weakly connected,
if the undirected graph obtained by making all arches bidirectional is connected




a weighted graph is a graph G = (V, E) together with
amap @: E - R that assigns a weight w; = @((j,i)) toan edge (j,i) € E

We can then define the m X m weight matrix W such that

i ..
W) = {Wf U € B
0 otherwise




W is row-stochasticif W(i,j) = 0and ;W (i,j)) = 1,i=1,..,m

W is column-stochasticif W(i,j) = 0and X,; W(i,j) =1,j=1,..,m

W is doubly-stochastic if it is both row and column stochastic

If1 =

11
} ,then, W1 = 1 (row-stochastic) and 17W = 17 (column-stochastic)

1




Application: consensus protocols

m agents communicate along a set of links described by a graph G = (V, E)

(by definition each agent communicates with itself, and hence belongs to its
neighborhood)

each agent i has a scalar state x; with initial value x;(0) and the agents aim
at jointly reaching consensus to the average of their initial states

1
7(0) = — > x(0)




| Application: consensus protocols

Distributed averaging solution:
* Associate a weight W(i,j) > 0to (j,i) EE
* Let each agent compute in parallel the weighted average

xi(k +1) = W (i, j) x; (k)

JEN;




| Application: consensus protocols

Distributed averaging solution:
* Associate a weight W(i,j) > 0to (j,i) EE
* Let each agent compute in parallel the weighted average

xi(k+1) = W (i, j) x;(k)
JEN;

Theorem
If the weight matrix W is doubly-stochastic and the communication graph

G = (V,E) is (strongly) connected, then
’lim x;(k) =x(0),i=1,..,m




| Application: consensus protocols

Proof of the distributed average consensus theorem

Let x = be the collection the states of the m agents. Then, we have

x(k+1) =Wx(k)




| Application: consensus protocols

Proof of the distributed average consensus theorem

Let x = be the collection the states of the m agents. Then, we have

x(k+1) =Wx(k)

Property 1: the average x(k) = %Zi x; (k) is preserved throughout iterations
Since 17W = 1T, we have that

_ 1 1 1 _ _
x(k+1) = - 1"x(k+ 1) = - 1TWx(k) = - 17x(k) = x(k) = x(0)




| Application: consensus protocols

Proof of the distributed average consensus theorem

X4
Let x = x:2 be the collection the states of the m agents. Then, we have
e
x(k+1) =Wx(k)
Property 1: x(k) = %lTx(k) =x(0),k>0

Note also that since
o Wi1x(k) = 1x(k)

¢ 2117 (x(k) — 12(0)) = 1G-17x(k) — ~1715(k)) = 0




| Application: consensus protocols

Proof of the distributed average consensus theorem

X4
Let x = x:2 be the collection the states of the m agents. Then, we have
e
x(k+1) =Wx(k)
Property 1: x(k) = %lTx(k) =x(0),k>0

Note also that since
o Wi1x(k) = 1x(k)
¢ =117 (x(k) - 12(k)) = 1(-17x(k) — —171%(k)) = 0

the dynamics of the disagreement vector is given by:
x(k+1)—1x(k+1) =Wx(k) — 1x(k) = W(x(k) — 1x(k))

m
B N




| Application: consensus protocols

Proof of the distributed average consensus theorem

x(k+1) — 15k + 1) = <W - % 11T> (x(k) — 1%(k))

We now just need to prove that W — %11T has all eigenvalues with [A| < 1.
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Proof of the distributed average consensus theorem

x(k+1) — 1%k + 1) = (W - % 11T> (x(k) — 1%(k))

We now just need to prove that W — %11T has all eigenvalues with |A| < 1

Preliminary results:
* since W is doubly-stochastic, then, it has all eigenvalues with |A| < 1
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« each eigenvector v associated to an eigenvalue with |A| < 1 is orthogonal to 1
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Proof of the distributed average consensus theorem

x(k+1) — 1%k + 1) = (W - % 11T> (x(k) — 1%(k))
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Application: consensus protocols

Proof of the distributed average consensus theorem

x(k+1) — 1%k + 1) = (W - % 11T> (x(k) — 1%(k))

We now just need to prove that W — %11T has all eigenvalues with |A| < 1

Preliminary results:
* since W is doubly-stochastic, then, it has all eigenvalues with |A| < 1
Mo = Wv — Al maxlv;| = Mlve| = | Z; WG vyl < ;W6 DIl < vy
« each eigenvector v associated to an eigenvalue with |A| < 1 is orthogonal to 1
1"Wrv=1"w-1Tv=M1Tv>1Tv =0
e A= 1isaneigenvalue of W and 1 is an eigenvector associated with it
Wi=1-A=1

* since the graph is strongly connected, by Perron—Frobenius theorem, only one
eigenvalues of W satisfy |A| = 1, it is equal to 1 and simple with eigenvector 1




| Application: consensus protocols

Proof of the distributed average consensus theorem

x(k+1) — 15k + 1) = <W - % 11T> (x(k) — 1%(k))

We now just need to prove that W — %11T has all eigenvalues with |A| < 1

To this purpose, by using the preliminary results we shall show that
1. the eigenvalue A = 1 of W with eigenvector 1 is shifted to 0
2. all the other eigenvalues of W (with |A| < 1) are preserved




| Application: consensus protocols

Proof of the distributed average consensus theorem

x(k+1) — 15k + 1) = <W - % 11T> (x(k) — 1%(k))

We now just need to prove that W — %11T has all eigenvalues with |[A| < 1.

To this purpose, by using the preliminary results we shall show that
1. the eigenvalue A = 1 of W with eigenvector 1 is shifted to 0

1 1
wW-—11T|1=w1-1—1"1=1-1=0-1
m m




| Application: consensus protocols

Proof of the distributed average consensus theorem

x(k+1) — 15k + 1) = <W - % 11T> (x(k) — 1%(k))

We now just need to prove that W — %11T has all eigenvalues with [A| < 1.

To this purpose, by using the preliminary results we shall show that
1. the eigenvalue A = 1 of W with eigenvector 1 is shifted to 0
2. all the other eigenvalues of W (with |A| < 1) are preserved

Let v be an eigenvector associated with an eigenvalue A of W with |A| < 1, then,
it is orthogonal to 1 and, hence,

1 1
W—-——11T|lv=Wv—-——11Tv = Wv = v
m m




| Time-varying setting

Let the time-varying graphs G, = (V,Ey), k = 0,1, ... with

V={12,..,m} E, ={(,i): j communicates with i at time k}

model a time-varying communication network
Introduce the weight matrices W,k = 0,1, ... associated with G,k = 0,1, ... and
consider the distributed algorithm

x(k +1) =W,x(k)




Time-varying setting

Assumptions:

* Connectivity

(V, Ey) strongly connected where
E, = {(j,i): j communicates with i infinitely often}
 Bounded intercommunication time (partial asynchronism)
there exists T > 1 such that for every (j, i) € E,
(j,i) EE, UE,;1U--UE,,7_1,k=0

i.e., agent i receives information from a neighboring agentj at least once every
consecutive T iterations

* Weights rules

each W, is doubly-stochastic and there exists n > 0 such that
W,(i,i) =n,Vi,Vk
Wi (i,j) =n,Y(,i) € Ey




Time-varying setting

Let the time-varying graphs G, = (V,Ey), k = 0,1, ... with
V={12,..,m} E, ={(,i): j communicates with i at time k}

model a time-varying communication network
Introduce the weight matrices W,k = 0,1, ... associated with G,k = 0,1, ... and
consider the distributed algorithm

x(k +1) =W,x(k)

Theorem

Under the previous assumptions on the communication network and the weights,
the agents asymptotically reach consensus on the average
’lim x;(k) =x(0),i=1,..,m
—00




