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• Modeling agent-to-agent communication as a graph 

• Undirected and directed graph 

• Connectivity and strong connectivity 

• Application to distributed averaging 

• Extension to the time-varying case 
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𝑁𝑖 = {𝑗: (𝑗, 𝑖) ∈ 𝐸} 
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agent 𝑗 communicates with agent 𝑖  edge 𝑒 = (𝑗, 𝑖)  

 

Graph modeling the agents communication:  𝐺 = 𝑉, 𝐸   

Path is a subgraph π = 𝑉𝜋 , 𝐸𝜋 ⊂ 𝐺 with  

𝑉𝜋 = 𝑖1, 𝑖2, … , 𝑖𝑘 ⊂ V      𝐸𝜋 = { 𝑖1, 𝑖2 , 𝑖2, 𝑖3 , … , (𝑖𝑘−1, 𝑖𝑘)} ⊂ 𝐸 
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 

shortest path defines the 
distance between two nodes  



 

 

 

Undirected graph and connectivity 

graph 𝐺 = 𝑉, 𝐸  is undirected if  
𝑗, 𝑖 ∈ 𝐸 ⇒ 𝑖, 𝑗 ∈ 𝐸 
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graph 𝐺 = 𝑉, 𝐸  is undirected if  
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an undirected graph is connected,  

 if there exists a path π between any two distinct nodes  
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Undirected graph and connectivity 

graph 𝐺 = 𝑉, 𝐸  is undirected if  
𝑗, 𝑖 ∈ 𝐸 ⇒ 𝑖, 𝑗 ∈ 𝐸 

 

an undirected graph is connected,  

 if there exists a path π between any two distinct nodes  

 

diameter of a connected graph is the maximum distance between two nodes  
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Directed graph and connectivity 

graph 𝐺 = 𝑉, 𝐸  is directed if  
∃ 𝑗, 𝑖 ∈ 𝐸 such that 𝑖, 𝑗 ∉ 𝐸 
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graph 𝐺 = 𝑉, 𝐸  is directed if  
∃ 𝑗, 𝑖 ∈ 𝐸 such that 𝑖, 𝑗 ∉ 𝐸 

 

a directed graph is strongly connected, 
if there exists a directed path π between any two distinct nodes 

 

a directed graph is weakly connected,  
if the undirected graph obtained by making all arches bidirectional is connected 

 

1 

2 3 

4 5 6 



 

 

 

Directed graph and connectivity 

graph 𝐺 = 𝑉, 𝐸  is directed if  
∃ 𝑗, 𝑖 ∈ 𝐸 such that 𝑖, 𝑗 ∉ 𝐸 

 

a directed graph is strongly connected, 
if there exists a directed path π between any two distinct nodes 

 

a directed graph is weakly connected,  
if the undirected graph obtained by making all arches bidirectional is connected 

 

1 

2 3 

4 5 6 



a weighted graph is a graph 𝐺 = 𝑉, 𝐸  together with  

a map φ: 𝐸 → 𝑅 that assigns a weight 𝑤𝑗
𝑖 = φ( 𝑗, 𝑖 ) to an edge (𝑗, 𝑖) ∈ 𝐸  

We can then define the 𝑚 ×𝑚 weight matrix 𝑊 such that 

𝑊 𝑖, 𝑗 =  
𝑤𝑗

𝑖        (𝑗, 𝑖) ∈ 𝐸

0        otherwise
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𝑊 is row-stochastic if 𝑊 𝑖, 𝑗 ≥ 0 and  𝑊(𝑖, 𝑗)𝑗 = 1, 𝑖 = 1,… ,𝑚  

𝑊 is column-stochastic if 𝑊 𝑖, 𝑗 ≥ 0 and  𝑊(𝑖, 𝑗)𝑖 = 1, 𝑗 = 1, … ,𝑚  

𝑊 is doubly-stochastic if it is both row and column stochastic 

If 𝟏 =

1
1
⋮
1

, then, 𝑊𝟏 = 𝟏 (row-stochastic)  and  𝟏𝑇𝑊 = 𝟏𝑇 (column-stochastic) 
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• 𝑚 agents communicate along a set of links described by a graph 𝐺 = 𝑉, 𝐸  
(by definition each agent communicates with itself, and hence belongs to its 
neighborhood) 

• each agent 𝑖 has a scalar state 𝑥𝑖 with initial value 𝑥𝑖(0)  and the agents aim 
at jointly reaching consensus to the average of their initial states  

𝑥 0 =
1

𝑚
 𝑥𝑖(0)

𝑖
 

 

 

 

 

 

 

Application: consensus protocols 



Distributed averaging solution:  

• Associate a weight 𝑊 𝑖, 𝑗 > 0 to (𝑗, 𝑖) ∈ 𝐸 

• Let each agent compute in parallel the weighted average  

 

𝑥𝑖 𝑘 + 1 =  𝑊(𝑖, 𝑗)
𝑗∈𝑁𝑖

𝑥𝑗 𝑘  

 

 

Application: consensus protocols 



Distributed averaging solution:  

• Associate a weight 𝑊 𝑖, 𝑗 > 0 to (𝑗, 𝑖) ∈ 𝐸 

• Let each agent compute in parallel the weighted average  

 

𝑥𝑖 𝑘 + 1 =  𝑊(𝑖, 𝑗)
𝑗∈𝑁𝑖

𝑥𝑗 𝑘  

Theorem 

If the weight matrix 𝑊 is doubly-stochastic and the communication graph 
𝐺 = 𝑉, 𝐸  is (strongly) connected, then   

lim
𝑘→∞

𝑥𝑖(𝑘) = 𝑥 0 , 𝑖 = 1,… ,𝑚 
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Proof of the distributed average consensus theorem 

Let 𝑥 =

𝑥1
𝑥2
⋮
𝑥𝑚

 be the collection the states of the 𝑚 agents. Then, we have 

𝑥 𝑘 + 1 = 𝑊𝑥(𝑘) 
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 be the collection the states of the 𝑚 agents. Then, we have 
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Property 1: the average 𝑥 𝑘 =
1

𝑚
 𝑥𝑖(𝑘)𝑖  is preserved throughout iterations 

Since 𝟏𝑇𝑊 = 𝟏𝑇, we have that  

𝑥 𝑘 + 1 =
1

𝑚
𝟏𝑇𝑥 𝑘 + 1 =

1

𝑚
𝟏𝑇𝑊𝑥 𝑘 =

1

𝑚
𝟏𝑇𝑥 𝑘 = 𝑥 𝑘 = 𝑥 0  
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eigenvalues of 𝑊 satisfy λ = 1, it is equal to 1 and simple with eigenvector 𝟏 
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To this purpose, by using the preliminary results we shall show that  

1. the eigenvalue λ = 1 of 𝑊 with eigenvector 𝟏 is shifted to 0   

2. all the other eigenvalues of 𝑊 (with λ < 1) are preserved 
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To this purpose, by using the preliminary results we shall show that  

1. the eigenvalue λ = 1 of 𝑊 with eigenvector 𝟏 is shifted to 0   

 

𝑊 −
1

𝑚
𝟏𝟏𝑇 𝟏 = 𝑊𝟏− 𝟏
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𝟏𝑇𝟏 = 𝟏 − 𝟏 = 0 ∙ 𝟏 
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𝟏𝟏𝑇 (𝑥 𝑘 − 𝟏𝑥 𝑘 ) 

We now just need to prove that 𝑊 −
1

𝑚
𝟏𝟏𝑇 has all eigenvalues with λ < 1. 

 

To this purpose, by using the preliminary results we shall show that  

1. the eigenvalue λ = 1 of 𝑊 with eigenvector 𝟏 is shifted to 0   

2. all the other eigenvalues of 𝑊 (with λ < 1) are preserved 

Let 𝑣 be an eigenvector associated with an eigenvalue 𝜆 of 𝑊 with λ < 1, then, 
it is orthogonal to 𝟏 and, hence,  

𝑊 −
1

𝑚
𝟏𝟏𝑇 𝑣 = 𝑊𝑣 −

1

𝑚
𝟏𝟏𝑇𝑣 = 𝑊𝑣 = 𝜆𝑣 

Application: consensus protocols 



Let the time-varying graphs 𝐺𝑘 = 𝑉, 𝐸𝑘 , 𝑘 = 0,1, … with 

𝑉 = 1,2, … ,𝑚   𝐸𝑘 = { 𝑗, 𝑖 :  𝑗 communicates with 𝑖 at time 𝑘} 

model a time-varying communication network  

Introduce the weight matrices 𝑊𝑘 , k = 0,1, … associated with 𝐺𝑘 , 𝑘 = 0,1, … and   

consider the distributed algorithm 

 
𝑥 𝑘 + 1 = 𝑊𝑘𝑥(𝑘) 

 

 

 

 

Time-varying setting 



Assumptions: 

• Connectivity   

 (V, 𝐸∞) strongly connected where  
𝐸∞ = { 𝑗, 𝑖 :  𝑗 communicates with 𝑖 infinitely often} 

• Bounded intercommunication time (partial asynchronism) 

 there exists T ≥ 1 such that for every 𝑗, 𝑖 ∈ 𝐸∞,   

𝑗, 𝑖 ∈ 𝐸𝑘 ∪ 𝐸𝑘+1 ∪⋯∪ 𝐸𝑘+𝑇−1, 𝑘 ≥ 0 

 i.e., agent i receives information from a neighboring agent j at least once every 
 consecutive T iterations 

• Weights rules 

 each 𝑊𝑘 is doubly-stochastic and there exists 𝜂 > 0 such that  

𝑊𝑘 𝑖, 𝑖 ≥ 𝜂, ∀𝑖, ∀𝑘            

𝑊𝑘 𝑖, 𝑗 ≥ 𝜂, ∀(𝑗, 𝑖) ∈ 𝐸𝑘 

 

 

 

 

 

 

Time-varying setting 



Let the time-varying graphs 𝐺𝑘 = 𝑉, 𝐸𝑘 , 𝑘 = 0,1, … with 

𝑉 = 1,2, … ,𝑚   𝐸𝑘 = { 𝑗, 𝑖 :  𝑗 communicates with 𝑖 at time 𝑘} 

model a time-varying communication network  

Introduce the weight matrices 𝑊𝑘 , k = 0,1, … associated with 𝐺𝑘 , 𝑘 = 0,1, … and   

consider the distributed algorithm 

 
𝑥 𝑘 + 1 = 𝑊𝑘𝑥(𝑘) 

 

Theorem 

Under the previous assumptions on the communication network and the weights, 
the agents asymptotically reach consensus on the average    

lim
𝑘→∞

𝑥𝑖(𝑘) = 𝑥 0 , 𝑖 = 1,… ,𝑚 

 

 

 

Time-varying setting 


