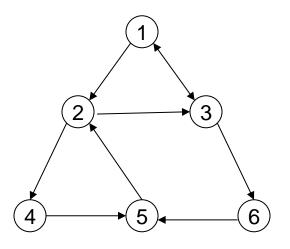
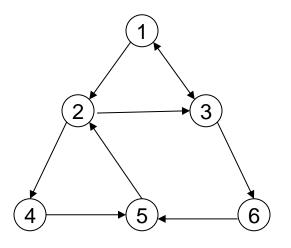


Maria Prandini

- Modeling agent-to-agent communication as a graph
- Undirected and directed graph
- Connectivity and strong connectivity
- Application to distributed averaging
- Extension to the time-varying case



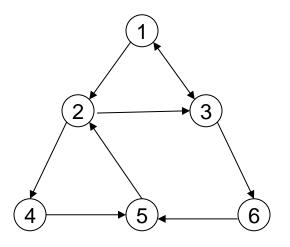
agent *j* communicates with agent $i \rightarrow edge e = (j, i)$



agent j communicates with agent $i \rightarrow edge e = (j, i)$

Graph modeling the agents communication: G = (V, E)

 $V = \{1, 2, ..., m\} E = \{(j, i): j \text{ communicates with } i\} \subseteq V \times V$



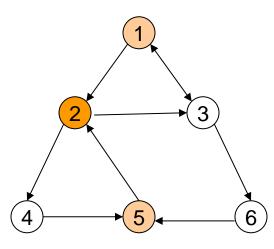
agent j communicates with agent $i \rightarrow edge e = (j, i)$

Graph modeling the agents communication: G = (V, E)

 $V = \{1, 2, ..., m\} E = \{(j, i): j \text{ communicates with } i\} \subseteq V \times V$

Neighbors of agent *i*:

$$N_i = \{j \colon (j,i) \in E\}$$



$$N_2 = \{1,5\}$$

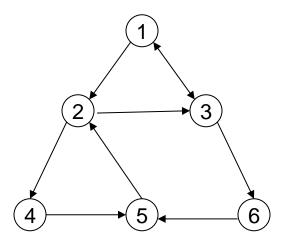
agent j communicates with agent $i \rightarrow edge e = (j, i)$

Graph modeling the agents communication: G = (V, E)

 $V = \{1, 2, ..., m\} E = \{(j, i): j \text{ communicates with } i\} \subseteq V \times V$

Neighbors of agent *i*:

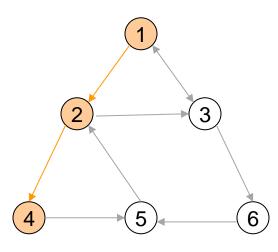
$$N_i = \{j \colon (j,i) \in E\}$$



agent j communicates with agent $i \rightarrow edge e = (j, i)$

Graph modeling the agents communication: G = (V, E)

$$V_{\pi} = \{i_1, i_2, \dots, i_k\} \subset V \qquad E_{\pi} = \{(i_1, i_2), (i_2, i_3), \dots, (i_{k-1}, i_k)\} \subset E$$



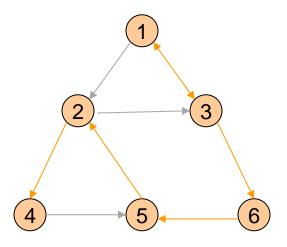
example of a path of length 2

agent \rightarrow node *i*

agent j communicates with agent $i \rightarrow edge e = (j, i)$

Graph modeling the agents communication: G = (V, E)

$$V_{\pi} = \{i_1, i_2, \dots, i_k\} \subset \mathbb{V} \qquad E_{\pi} = \{(i_1, i_2), (i_2, i_3), \dots, (i_{k-1}, i_k)\} \subset E$$



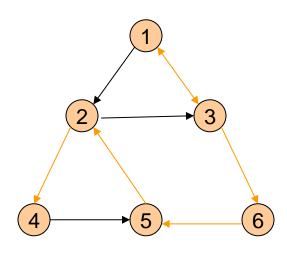
example of a path of length 5

agent \rightarrow node *i*

agent j communicates with agent $i \rightarrow edge e = (j, i)$

Graph modeling the agents communication: G = (V, E)

$$V_{\pi} = \{i_1, i_2, \dots, i_k\} \subset V \qquad E_{\pi} = \{(i_1, i_2), (i_2, i_3), \dots, (i_{k-1}, i_k)\} \subset E$$



example of a path of length 5 ↓ shortest path defines the distance between two nodes

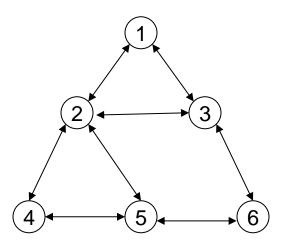
agent \rightarrow node *i*

agent j communicates with agent $i \rightarrow edge e = (j, i)$

Graph modeling the agents communication: G = (V, E)

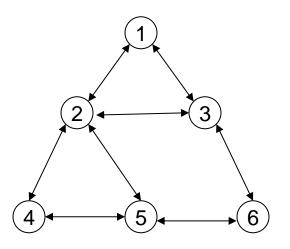
$$V_{\pi} = \{i_1, i_2, \dots, i_k\} \subset V \qquad E_{\pi} = \{(i_1, i_2), (i_2, i_3), \dots, (i_{k-1}, i_k)\} \subset E$$

Undirected graph and connectivity



graph
$$G = (V, E)$$
 is undirected if
 $(j, i) \in E \Rightarrow (i, j) \in E$

Undirected graph and connectivity

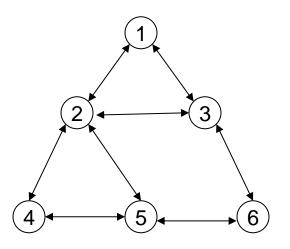


graph G = (V, E) is undirected if $(j, i) \in E \Rightarrow (i, j) \in E$

an undirected graph is connected,

if there exists a path π between any two distinct nodes

Undirected graph and connectivity



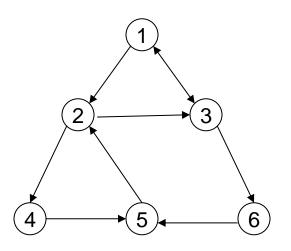
graph G = (V, E) is undirected if $(j, i) \in E \Rightarrow (i, j) \in E$

an undirected graph is connected,

if there exists a path π between any two distinct nodes

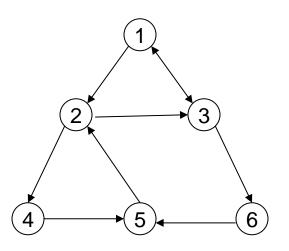
diameter of a connected graph is the maximum distance between two nodes

Directed graph and connectivity



graph G = (V, E) is directed if $\exists (j, i) \in E$ such that $(i, j) \notin E$

Directed graph and connectivity



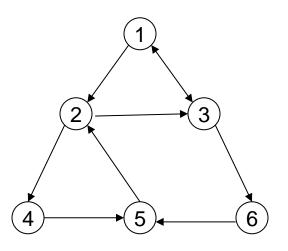
graph G = (V, E) is directed if $\exists (j, i) \in E$ such that $(i, j) \notin E$

a directed graph is strongly connected, if there exists a directed path π between any two distinct nodes

a directed graph is weakly connected,

if the undirected graph obtained by making all arches bidirectional is connected

Directed graph and connectivity



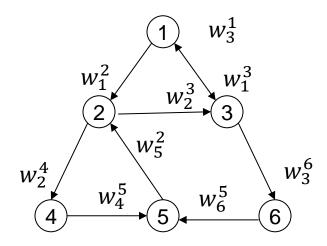
graph G = (V, E) is directed if $\exists (j, i) \in E$ such that $(i, j) \notin E$

a directed graph is strongly connected,

if there exists a directed path π between any two distinct nodes

a directed graph is weakly connected,

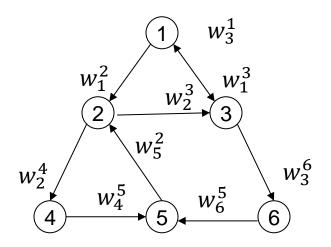
if the undirected graph obtained by making all arches bidirectional is connected



a weighted graph is a graph G = (V, E) together with a map $\varphi: E \to R$ that assigns a weight $w_j^i = \varphi((j, i))$ to an edge $(j, i) \in E$

We can then define the $m \times m$ weight matrix W such that

$$W(i,j) = \begin{cases} w_j^i & (j,i) \in E\\ 0 & \text{otherwise} \end{cases}$$



W is row-stochastic if $W(i,j) \ge 0$ and $\sum_{j} W(i,j) = 1, i = 1, ..., m$

W is column-stochastic if $W(i, j) \ge 0$ and $\sum_i W(i, j) = 1, j = 1, ..., m$

W is doubly-stochastic if it is both row and column stochastic

If
$$\mathbf{1} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$
, then, $W\mathbf{1} = \mathbf{1}$ (row-stochastic) and $\mathbf{1}^T W = \mathbf{1}^T$ (column-stochastic)

Application: consensus protocols

- *m* agents communicate along a set of links described by a graph G = (V, E)(by definition each agent communicates with itself, and hence belongs to its neighborhood)
- each agent *i* has a scalar state x_i with initial value $x_i(0)$ and the agents aim at jointly reaching consensus to the average of their initial states

$$\bar{x}(0) = \frac{1}{m} \sum_{i} x_i(0)$$

Distributed averaging solution:

- Associate a weight W(i, j) > 0 to $(j, i) \in E$
- Let each agent compute in parallel the weighted average

$$x_i(k+1) = \sum_{j \in N_i} W(i,j) x_j(k)$$

Distributed averaging solution:

- Associate a weight W(i, j) > 0 to $(j, i) \in E$
- Let each agent compute in parallel the weighted average

$$x_i(k+1) = \sum_{j \in N_i} W(i,j) x_j(k)$$

Theorem

If the weight matrix W is doubly-stochastic and the communication graph G = (V, E) is (strongly) connected, then

$$\lim_{k \to \infty} x_i(k) = \bar{x}(0), i = 1, \dots, m$$

Let $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$ be the collection the states of the *m* agents. Then, we have x(k+1) = Wx(k)

Let $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$ be the collection the states of the *m* agents. Then, we have x(k+1) = Wx(k)

Property 1: the average $\bar{x}(k) = \frac{1}{m} \sum_{i} x_i(k)$ is preserved throughout iterations Since $\mathbf{1}^T W = \mathbf{1}^T$, we have that $\bar{x}(k+1) = \frac{1}{m} \mathbf{1}^T x(k+1) = \frac{1}{m} \mathbf{1}^T W x(k) = \frac{1}{m} \mathbf{1}^T x(k) = \bar{x}(k) = \bar{x}(0)$

Let $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$ be the collection the states of the *m* agents. Then, we have x(k+1) = Wx(k)

Property 1: $\bar{x}(k) = \frac{1}{m} \mathbf{1}^T x(k) = \bar{x}(0), k > 0$

Note also that since

• W1 $\bar{x}(k) = 1\bar{x}(k)$

•
$$\frac{1}{m}\mathbf{1}\mathbf{1}^T(x(k)-\mathbf{1}\bar{x}(k)) = \mathbf{1}(\frac{1}{m}\mathbf{1}^T x(k)-\frac{1}{m}\mathbf{1}^T\mathbf{1}\bar{x}(k)) = 0$$

Let $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$ be the collection the states of the *m* agents. Then, we have x(k+1) = Wx(k)

Property 1: $\bar{x}(k) = \frac{1}{m} \mathbf{1}^T x(k) = \bar{x}(0), k > 0$

Note also that since

• W1 $\bar{x}(k) = 1\bar{x}(k)$

•
$$\frac{1}{m} \mathbf{1} \mathbf{1}^T \left(x(k) - \mathbf{1} \bar{x}(k) \right) = \mathbf{1} \left(\frac{1}{m} \mathbf{1}^T x(k) - \frac{1}{m} \mathbf{1}^T \mathbf{1} \bar{x}(k) \right) = 0$$

the dynamics of the disagreement vector is given by:

$$\begin{aligned} x(k+1) - \mathbf{1}\bar{x}(k+1) &= Wx(k) - \mathbf{1}\bar{x}(k) = W(x(k) - \mathbf{1}\bar{x}(k)) \\ &= \left(W - \frac{1}{m}\mathbf{1}\mathbf{1}^T\right)(x(k) - \mathbf{1}\bar{x}(k)) \end{aligned}$$

$$x(k+1) - \mathbf{1}\bar{x}(k+1) = \left(W - \frac{1}{m}\mathbf{1}\mathbf{1}^T\right)(x(k) - \mathbf{1}\bar{x}(k))$$

We now just need to prove that $W - \frac{1}{m} \mathbf{1} \mathbf{1}^T$ has all eigenvalues with $|\lambda| < 1$.

$$x(k+1) - \mathbf{1}\bar{x}(k+1) = \left(W - \frac{1}{m}\mathbf{1}\mathbf{1}^T\right)(x(k) - \mathbf{1}\bar{x}(k))$$

We now just need to prove that $W - \frac{1}{m} \mathbf{1} \mathbf{1}^T$ has all eigenvalues with $|\lambda| < 1$. Preliminary results:

$$x(k+1) - \mathbf{1}\bar{x}(k+1) = \left(W - \frac{1}{m}\mathbf{1}\mathbf{1}^T\right)(x(k) - \mathbf{1}\bar{x}(k))$$

We now just need to prove that $W - \frac{1}{m} \mathbf{1} \mathbf{1}^T$ has all eigenvalues with $|\lambda| < 1$. Preliminary results:

• since W is doubly-stochastic, then, it has all eigenvalues with $|\lambda| \le 1$ $\lambda v = Wv \rightarrow |\lambda| \max_{i} |v_i| = |\lambda| |v_{i^*}| = |\sum_{j} W(i^*, j) v_j| \le \sum_{j} W(i^*, j) |v_j| \le |v_{i^*}|$

$$x(k+1) - \mathbf{1}\bar{x}(k+1) = \left(W - \frac{1}{m}\mathbf{1}\mathbf{1}^T\right)(x(k) - \mathbf{1}\bar{x}(k))$$

We now just need to prove that $W - \frac{1}{m} \mathbf{1} \mathbf{1}^T$ has all eigenvalues with $|\lambda| < 1$ Preliminary results:

- since W is doubly-stochastic, then, it has all eigenvalues with $|\lambda| \le 1$ $\lambda v = Wv \rightarrow |\lambda| \max_{i} |v_i| = |\lambda| |v_{i^*}| = |\sum_{j} W(i^*, j) v_j| \le \sum_{j} W(i^*, j) |v_j| \le |v_{i^*}|$
- each eigenvector v associated to an eigenvalue with $|\lambda| < 1$ is orthogonal to $\mathbf{1}$ $\mathbf{1}^T W v = \mathbf{1}^T \lambda v \rightarrow \mathbf{1}^T v = \lambda \mathbf{1}^T v \rightarrow \mathbf{1}^T v = 0$

$$x(k+1) - \mathbf{1}\bar{x}(k+1) = \left(W - \frac{1}{m}\mathbf{1}\mathbf{1}^T\right)(x(k) - \mathbf{1}\bar{x}(k))$$

We now just need to prove that $W - \frac{1}{m} \mathbf{1} \mathbf{1}^T$ has all eigenvalues with $|\lambda| < 1$ Preliminary results:

- since W is doubly-stochastic, then, it has all eigenvalues with $|\lambda| \le 1$ $\lambda v = Wv \rightarrow |\lambda| \max_{i} |v_i| = |\lambda| |v_{i^*}| = |\sum_{j} W(i^*, j) v_j| \le \sum_{j} W(i^*, j) |v_j| \le |v_{i^*}|$
- each eigenvector v associated to an eigenvalue with $|\lambda| < 1$ is orthogonal to $\mathbf{1}$ $\mathbf{1}^T W v = \mathbf{1}^T \lambda v \rightarrow \mathbf{1}^T v = \lambda \mathbf{1}^T v \rightarrow \mathbf{1}^T v = 0$
- $\lambda = 1$ is an eigenvalue of W and **1** is an eigenvector associated with it $W\mathbf{1} = \mathbf{1} \rightarrow \lambda = 1$

$$x(k+1) - \mathbf{1}\bar{x}(k+1) = \left(W - \frac{1}{m}\mathbf{1}\mathbf{1}^T\right)(x(k) - \mathbf{1}\bar{x}(k))$$

We now just need to prove that $W - \frac{1}{m} \mathbf{1} \mathbf{1}^T$ has all eigenvalues with $|\lambda| < 1$ Preliminary results:

- since W is doubly-stochastic, then, it has all eigenvalues with $|\lambda| \le 1$ $\lambda v = Wv \rightarrow |\lambda| \max_{i} |v_i| = |\lambda| |v_{i^*}| = |\sum_{j} W(i^*, j) v_j| \le \sum_{j} W(i^*, j) |v_j| \le |v_{i^*}|$
- each eigenvector v associated to an eigenvalue with $|\lambda| < 1$ is orthogonal to **1** $\mathbf{1}^T W v = \mathbf{1}^T \lambda v \rightarrow \mathbf{1}^T v = \lambda \mathbf{1}^T v \rightarrow \mathbf{1}^T v = 0$
- $\lambda = 1$ is an eigenvalue of W and **1** is an eigenvector associated with it $W\mathbf{1} = \mathbf{1} \rightarrow \lambda = 1$
- since the graph is strongly connected, by Perron–Frobenius theorem, only one eigenvalues of W satisfy $|\lambda| = 1$, it is equal to 1 and simple with eigenvector **1**

$$x(k+1) - \mathbf{1}\bar{x}(k+1) = \left(W - \frac{1}{m}\mathbf{1}\mathbf{1}^T\right)(x(k) - \mathbf{1}\bar{x}(k))$$

We now just need to prove that $W - \frac{1}{m} \mathbf{1} \mathbf{1}^T$ has all eigenvalues with $|\lambda| < 1$

To this purpose, by using the preliminary results we shall show that

- 1. the eigenvalue $\lambda = 1$ of W with eigenvector **1** is shifted to 0
- 2. all the other eigenvalues of W (with $|\lambda| < 1$) are preserved

$$x(k+1) - \mathbf{1}\bar{x}(k+1) = \left(W - \frac{1}{m}\mathbf{1}\mathbf{1}^T\right)(x(k) - \mathbf{1}\bar{x}(k))$$

We now just need to prove that $W - \frac{1}{m} \mathbf{1} \mathbf{1}^T$ has all eigenvalues with $|\lambda| < 1$.

To this purpose, by using the preliminary results we shall show that

1. the eigenvalue $\lambda = 1$ of W with eigenvector **1** is shifted to 0

$$\left(W - \frac{1}{m}\mathbf{1}\mathbf{1}^{T}\right)\mathbf{1} = W\mathbf{1} - \mathbf{1}\frac{1}{m}\mathbf{1}^{T}\mathbf{1} = \mathbf{1} - \mathbf{1} = \mathbf{0} \cdot \mathbf{1}$$

$$x(k+1) - \mathbf{1}\bar{x}(k+1) = \left(W - \frac{1}{m}\mathbf{1}\mathbf{1}^T\right)(x(k) - \mathbf{1}\bar{x}(k))$$

We now just need to prove that $W - \frac{1}{m} \mathbf{1} \mathbf{1}^T$ has all eigenvalues with $|\lambda| < 1$.

To this purpose, by using the preliminary results we shall show that

- 1. the eigenvalue $\lambda = 1$ of W with eigenvector **1** is shifted to 0
- 2. all the other eigenvalues of W (with $|\lambda| < 1$) are preserved

Let v be an eigenvector associated with an eigenvalue λ of W with $|\lambda| < 1$, then, it is orthogonal to **1** and, hence,

$$\left(W - \frac{1}{m}\mathbf{1}\mathbf{1}^{T}\right)v = Wv - \frac{1}{m}\mathbf{1}\mathbf{1}^{T}v = Wv = \lambda v$$

Let the time-varying graphs $G_k = (V, E_k)$, k = 0, 1, ... with

 $V = \{1, 2, ..., m\} E_k = \{(j, i): j \text{ communicates with } i \text{ at time } k\}$

model a time-varying communication network

Introduce the weight matrices W_k , k = 0,1, ... associated with G_k , k = 0,1, ... and consider the distributed algorithm

 $x(k+1) = W_k x(k)$

Assumptions:

Connectivity

 (V, E_{∞}) strongly connected where $E_{\infty} = \{(j, i): j \text{ communicates with } i \text{ infinitely often}\}$

Bounded intercommunication time (partial asynchronism)

there exists $T \ge 1$ such that for every $(j, i) \in E_{\infty}$,

 $(j,i) \in E_k \cup E_{k+1} \cup \cdots \cup E_{k+T-1}, k \ge 0$

i.e., agent *i* receives information from a neighboring agent *j* at least once every consecutive *T* iterations

• Weights rules

each W_k is doubly-stochastic and there exists $\eta > 0$ such that

 $W_k(i,i) \ge \eta, \forall i, \forall k$ $W_k(i,j) \ge \eta, \forall (j,i) \in E_k$

Let the time-varying graphs $G_k = (V, E_k)$, k = 0, 1, ... with

 $V = \{1, 2, ..., m\} E_k = \{(j, i): j \text{ communicates with } i \text{ at time } k\}$

model a time-varying communication network

Introduce the weight matrices W_k , k = 0,1, ... associated with G_k , k = 0,1, ... and consider the distributed algorithm

$$x(k+1) = W_k x(k)$$

Theorem

Under the previous assumptions on the communication network and the weights, the agents asymptotically reach consensus on the average

$$\lim_{k \to \infty} x_i(k) = \bar{x}(0), i = 1, \dots, m$$