
Math Tools:  

Basics on constrained and convex 

optimization – Part 1 

Maria Prandini 



 

• Constrained and convex optimization 

• Optimality conditions 

• Descent iterative methods: gradient algorithms 

• Convergence results 
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𝑓: 𝑅𝑛 → 𝑅 is a continuously differentiable function over 𝑋 
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Constrained optimization 



 
minimize 𝑓 𝑥
    subject to 𝑥 ∈ 𝑋

 

 

𝑓: 𝑅𝑛 → 𝑅 is a continuously differentiable function over 𝑋 

𝑋 is a non-empty closed convex set of  𝑅𝑛 

 

 

Constrained optimization 



A set 𝑋 ⊆ 𝑅𝑛 is convex if  
 

𝛼𝑥 + 1 − 𝛼 𝑦 ∈ 𝑋, ∀𝑥, 𝑦 ∈ 𝑋, ∀𝛼 ∈ [0,1] 

 

 

  

Convex sets 
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Convex sets 
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The empty set and 𝑅𝑛 are convex 

The intersection of any collection of convex sets is convex 

 

Convex sets 
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Convex sets 

A convex set has nice “shape”: 

• connected 

• at any point 𝑥 ∈ 𝑋, there is a feasible direction 

 

Def.  𝑑 ∈ 𝑅𝑛is a feasible direction at 𝑥 ∈ 𝑋 if 𝑥 + 𝛼𝑑 ∈ 𝑋 for all 
𝛼 > 0 that are sufficiently small. 
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If 𝑋 convex, feasible directions are given by 𝑑 = 𝑦 − 𝑥 with 𝑦 ∈ 𝑋  
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Constrained optimization 



 
minimize 𝑓 𝑥
    subject to 𝑥 ∈ 𝑋

 

 

𝑓: 𝑅𝑛 → 𝑅 is a continuously differentiable function over 𝑋 

𝑋 is a non-empty closed convex subset of  𝑅𝑛 

 

 

𝑥 ∈ 𝑋 is a feasible solution for the optimization problem  

if 𝑋 = 𝑅𝑛, then the optimization problem is unconstrained 

 

Constrained optimization 



Local and global minima 

A feasible 𝑥∗ ∈ 𝑋 is  

• a local minimum of 𝒇 over the set 𝑿 if  

 ∃𝜀 > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓 𝑥∗ ≤ 𝑓 𝑥 , ∀𝑥 ∈ 𝑋 𝑤𝑖𝑡ℎ 𝑥 − 𝑥∗  ≤ 𝜀 
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Local and global minima 

A feasible 𝑥∗ ∈ 𝑋 is  
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A local/global minimum is strict if 𝑓 𝑥∗ < 𝑓 𝑥  for 𝑥 ≠ 𝑥∗ 

 



Local and global minima 

𝑋 



 𝑓 𝑥 = 𝑥 and 𝑓 𝑥 = 𝑒𝑥  have no minima over 𝑋 = 𝑅  

  

 

  

Existence of a minimum 
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 𝑓 𝑥 = 𝑥 and 𝑓 𝑥 = 𝑒𝑥  have no minima over 𝑋 = 𝑅  

  

 How shall we know that at least a (global) minimum of a function 
𝑓 over 𝑋 does exist? 

  

 Sufficient conditions for the existence of a minimum: 

 i) 𝑓 continuous and 𝑋 compact (closed and bounded)  

 ii) 𝑓 continuous, 𝑋 closed, and 𝑓 coercive ( lim    
𝑥 →∞
𝑓 𝑥 = +∞) 

Existence of a minimum 



 𝑓 𝑥 = 𝑥 and 𝑓 𝑥 = 𝑒𝑥  have no minima over 𝑋 = 𝑅  

  

 How shall we know that at least a (global) minimum of a function 
𝑓 over 𝑋 does exist? 

  

 Sufficient conditions for the existence of a minimum: 

 i) 𝑓 continuous and 𝑋 compact (closed and bounded)  

 ii) 𝑓 continuous, 𝑋 closed, and 𝑓 coercive ( lim    
𝑥 →∞
𝑓 𝑥 = +∞) 

 

 What about local versus global minima? 

  

 

Existence of a minimum 



Let 𝑋 ⊆ 𝑅𝑛 be a convex set and 𝑓: 𝑋 → 𝑅 a convex function. 

Then, a local minimum 𝑥∗ of 𝑓 over 𝑋 is also a global minimum. 
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Convex functions and minima 
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Convex functions  

 All norms are convex functions 
 

 

 

 

 

 
 

 

 



Convex functions  

 All norms are convex functions 

 

 
 

 

 

  

𝑓 𝛼𝑥 + 1 − 𝛼 𝑦 ≤ 𝑓 𝛼𝑥 + 𝑓 1 − 𝛼 𝑦  𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦

                       = 𝛼𝑓 𝑥 + 1 − 𝛼 𝑓 𝑦  [ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦]
 

 

 

 
 

 

 



Let 𝑋 ⊆ 𝑅𝑛 be a convex set and 𝑓: 𝑋 → 𝑅 a convex function. 

Then, a local minimum 𝑥∗ of 𝑓 over 𝑋 is also a global minimum. 

 

  

Convex functions and minima 



Let 𝑋 ⊆ 𝑅𝑛 be a convex set and 𝑓: 𝑋 → 𝑅 a convex function. 

Then, a local minimum 𝑥∗ of 𝑓 over 𝑋 is also a global minimum. 

 

Proof [by contradiction]: 

Suppose that there exists 𝑥 ∈ 𝑋 such that 𝑓 𝑥 < 𝑓(𝑥∗).  

Then,  
 

𝑓 𝛼𝑥∗ + 1 − 𝛼 𝑥 ≤ 𝛼𝑓 𝑥∗ + 1 − 𝛼 𝑓 𝑥 < 𝑓 𝑥∗ , ∀𝛼
 

which contradicts that fact that 𝑥∗ is a local minimum.  

Convex functions and minima 



Convex functions and minima 

𝑓 𝛼𝑥∗ + 1 − 𝛼 𝑥  

𝛼𝑓 𝑥∗ + 1 − 𝛼 𝑓 𝑥  



 𝑓: 𝑋 → 𝑅 differentiable is a convex function if and only if  
 

𝑓 𝑦 ≥ 𝑓 𝑥 + 𝛻𝑓 𝑥 ′ 𝑦 − 𝑥 , ∀𝑦 ∈ 𝑋, ∀𝑥 ∈ 𝑋 

 

 

 

 

 

 

 

 the first order Taylor expansion at any point is a global under-
estimator of the function 

  

Convex functions: first order characterization 

𝑓 𝑥 + 𝛻𝑓(𝑥)′(𝑦 − 𝑥) 



 Proof [only if] 

 
𝑓 𝛼𝑦 + 1 − 𝛼 𝑥 ≥ 𝛼𝑓 𝑦 + 1 − 𝛼 𝑓 𝑥 , ∀𝛼 ∈ 0,1 , ∀𝑥, 𝑦 ∈ 𝑋 

 By rewriting, we get 
𝑓 𝑥 + 𝛼(𝑦 − 𝑥 ) ≥ 𝑓 𝑥 + 𝛼(𝑓 𝑦 − 𝑓 𝑥 ) 

 from which it follows  

𝑓 𝑦) − 𝑓(𝑥 ≥
𝑓 𝑥 + 𝛼(𝑦 − 𝑥 ) − 𝑓(𝑥)

𝛼(𝑦 − 𝑥)
 (𝑦 − 𝑥) 

 

 as 𝛼 → 0+, 𝑓 𝑦) − 𝑓(𝑥 ≥ 𝛻𝑓 𝑥 ′(𝑦 − 𝑥) 

Convex functions: first order characterization 



 Proof [if] 
𝑧 = 𝛼𝑦 + 1 − 𝛼 𝑥 

 From 
𝑓 𝑦 ≥ 𝑓 𝑧 + 𝛻𝑓 𝑧 ′ 𝑦 − 𝑧  
   𝑓 𝑥 ≥ 𝑓 𝑧 + 𝛻𝑓 𝑧 ′(𝑥 − 𝑧) 

  

 we obtain  

 𝛼𝑓 𝑦 + 1 − 𝛼 𝑓(𝑥) ≥ 𝑓(𝑧) +𝛻𝑓 𝑧 ′ 𝛼𝑦 + 1 − 𝛼 𝑥 − 𝑧 = 𝑓(𝑧) 

 which rewrites as  
𝛼𝑓 𝑦 + 1 − 𝛼 𝑓(𝑥) ≥ 𝑓(𝛼𝑦 + 1 − 𝛼 𝑥) 

 i.e., 𝑓 is convex 

Convex functions: first order characterization 



 𝑓: 𝑋 → 𝑅 differentiable is a convex function if and only if  
 

𝑓 𝑦 ≥ 𝑓 𝑥 + 𝛻𝑓 𝑥 ′ 𝑦 − 𝑥 , ∀𝑦 ∈ 𝑋, ∀𝑥 ∈ 𝑋 

 

 

 

 

 

 

 

 the first order Taylor expansion at any point is a global under 
estimator of the function 

 growth of a convex function is at least linear  

Convex functions: first order characterization 

𝑓 𝑥 + 𝛻𝑓(𝑥)′(𝑦 − 𝑥) 



𝑓: 𝑋 → 𝑅 is a convex function if  
 

𝑓 𝛼𝑥 + 1 − 𝛼 𝑦 ≤ 𝛼𝑓 𝑥 + 1 − 𝛼 𝑓 𝑦 , ∀𝑥, 𝑦 ∈ 𝑋, ∀𝛼 ∈ 0,1  

 

 

 
 

Convex functions 



𝑓: 𝑋 → 𝑅 is a convex function if  
 

𝑓 𝛼𝑥 + 1 − 𝛼 𝑦 ≤ 𝛼𝑓 𝑥 + 1 − 𝛼 𝑓 𝑦 , ∀𝑥, 𝑦 ∈ 𝑋, ∀𝛼 ∈ 0,1  

 

𝑓: 𝑋 → 𝑅 is a strictly convex function if  
 

𝑓 𝛼𝑥 + 1 − 𝛼 𝑦 < 𝛼𝑓 𝑥 + 1 − 𝛼 𝑓 𝑦 ,  
∀𝑥, 𝑦 ∈ 𝑋, 𝑥 ≠ 𝑦, ∀𝛼 ∈ (0,1) 

 

 

 
 

Convex functions 



𝑓: 𝑋 → 𝑅 is a convex function if  
 

𝑓 𝛼𝑥 + 1 − 𝛼 𝑦 ≤ 𝛼𝑓 𝑥 + 1 − 𝛼 𝑓 𝑦 , ∀𝑥, 𝑦 ∈ 𝑋, ∀𝛼 ∈ 0,1  

 

𝑓: 𝑋 → 𝑅 is a strictly convex function if  
 

𝑓 𝛼𝑥 + 1 − 𝛼 𝑦 < 𝛼𝑓 𝑥 + 1 − 𝛼 𝑓 𝑦 ,  
∀𝑥, 𝑦 ∈ 𝑋, 𝑥 ≠ 𝑦, ∀𝛼 ∈ (0,1) 

 
𝑓 𝑦 > 𝑓 𝑥 + 𝛻𝑓 𝑥 ′ 𝑦 − 𝑥 , ∀𝑦 ∈ 𝑋, ∀𝑥 ∈ 𝑋, 𝑥 ≠ 𝑦 

growth of a strictly convex function is more than linear 

 

 
 

Convex functions 



Let 𝑋 ⊆ 𝑅𝑛 be a convex set and 𝑓: 𝑋 → 𝑅 a convex function. 

Then, a local minimum 𝑥∗ of 𝑓 over 𝑋 is also a global minimum. 

If 𝑓 is also strictly convex,  

then there exists at most a global minimum of 𝑓 over 𝑋. 

 

Convex functions and minima 



Let 𝑋 ⊆ 𝑅𝑛 be a convex set and 𝑓: 𝑋 → 𝑅 a convex function. 

Then, a local minimum 𝑥∗ of 𝑓 over 𝑋 is also a global minimum. 

If 𝑓 is also strictly convex,  

then there exists at most a global minimum of 𝑓 over 𝑋. 

 

Proof [by contradiction]:   

Suppose that 𝑥∗ and 𝑦∗are both global minima.  

Then, by strict convexity: 
𝑓 0.5𝑥∗ + 0.5𝑦∗ < 0.5𝑓 𝑥∗ + 0.5𝑓 𝑦∗ = 𝑓(𝑥∗) 

 which contradicts the fact that 𝑥∗ is a global minimum  

Convex functions and minima 



𝑓: 𝑋 → 𝑅 is a convex function if  
 

𝑓 𝛼𝑥 + 1 − 𝛼 𝑦 ≤ 𝛼𝑓 𝑥 + 1 − 𝛼 𝑓 𝑦 , ∀𝑥, 𝑦 ∈ 𝑋, ∀𝛼 ∈ 0,1  

 

𝑓: 𝑋 → 𝑅 is a strictly convex function if  
 

𝑓 𝛼𝑥 + 1 − 𝛼 𝑦 < 𝛼𝑓 𝑥 + 1 − 𝛼 𝑓 𝑦 ,  
∀𝑥, 𝑦 ∈ 𝑋, 𝑥 ≠ 𝑦, ∀𝛼 ∈ (0,1) 

 

𝑓: 𝑋 → 𝑅 is a strongly convex function if there exists 𝜇 > 0 such that 

 

 

 
 

Convex functions 



𝑓: 𝑋 → 𝑅 is a convex function if  
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strongly convex  strictly convex  convex  

 

 
 

Convex functions 



𝑓: 𝑋 → 𝑅 is a strongly convex function if there exists 𝜇 > 0 such that 

 

 

Equivalently,  

 

 

  

 

 

 

 

 
 

Convex functions 



𝑓: 𝑋 → 𝑅 is a strongly convex function if there exists 𝜇 > 0 such that 

 

 

Equivalently,  

 

 

Proof [exercise]: 

follows from the definition of convex function for 𝑔 𝑥  

  

 

 

 

 

 
 

Convex functions 



𝑓: 𝑋 → 𝑅 is a strongly convex function if there exists 𝜇 > 0 such that 

 

 

Equivalently,  

 

 

and if 𝑓 is differentiable 

  

 

 

 
 

Convex functions 



𝑓: 𝑋 → 𝑅 is a strongly convex function if there exists 𝜇 > 0 such that 

 

 

Equivalently,  

 

 

and if 𝑓 is differentiable 

  

 

Proof [exercise]:  

follows from the first-order condition for convexity of 𝑔 𝑥 , 𝑖. 𝑒. 

 

 

 
 

Convex functions 



 

 

 In practice, strong convexity means that there exists a quadratic 
lower bound on the growth of the function.  

  

 

Strong convexity 



 

 

 In practice, strong convexity means that there exists a quadratic 
lower bound on the growth of the function 

  

 for a convex function the growth is at least linear 

 for a strictly convex function the growth is more than linear 

 for a strongly convex function the growth is at least quadratic 

 

Strong convexity 



  If  𝑓: 𝑋 → 𝑅 with 𝑋 ⊆ 𝑅  is twice continuously differentiable, 
then we can characterize convexity, strict convexity and strong 
convexity as follows: 

 i) f convex if and only if 
𝑑2𝑓

𝑑𝑥2
𝑥 ≥ 0, ∀𝑥𝜖𝑋 

 ii) f strictly convex if  
𝑑2𝑓

𝑑𝑥2
𝑥 > 0, ∀𝑥𝜖𝑋   

 iii) f is -strongly convex if and only if  
𝑑2𝑓

𝑑𝑥2
𝑥 ≥ , ∀𝑥𝜖 𝑋 

 

  

Convex functions 



  If  𝑓: 𝑋 → 𝑅 with 𝑋 ⊆ 𝑅  is twice continuously differentiable, 
then we can characterize convexity, strict convexity and strong 
convexity as follows: 

 i) f convex if and only if 
𝑑2𝑓

𝑑𝑥2
𝑥 ≥ 0, ∀𝑥𝜖𝑋 

 ii) f strictly convex if  
𝑑2𝑓

𝑑𝑥2
𝑥 > 0, ∀𝑥𝜖𝑋   

 iii) f is -strongly convex if and only if  
𝑑2𝑓

𝑑𝑥2
𝑥 ≥ , ∀𝑥𝜖 𝑋 

 

 Remark:  

 ii) is a sufficient but not necessary condition 

Example: 𝑓 𝑥 = 𝑥4 is strictly convex but  
𝑑2𝑓

𝑑𝑥2
𝑥 = 12𝑥2 

Convex functions 



 

• Constrained and convex optimization 

• Optimality conditions 

• Descent iterative methods: gradient algorithms 

• Convergence results 

• Non differentiable setting 

 

 

Outline 
 



minimize 𝑓 𝑥
    subject to 𝑥 ∈ 𝑋

 

 

𝑓: 𝑅𝑛 → 𝑅 is a continuously differentiable function over 𝑋 

𝑋 is a non-empty closed convex subset of  𝑅𝑛 

 

Characterization of local minima through necessary and/or 
sufficient conditions in: 

• the unconstrained case (𝑋 = 𝑅𝑛) 

• the constrained case (𝑋 ⊂ 𝑅𝑛) 

 

Optimality conditions 



Necessary conditions for 𝑥∗ to be a local minimum of 𝑓 over 𝑅𝑛  

• First order condition: zero slope at 𝑥∗ 

𝛻𝑓 𝑥∗ = 0 

     where 𝛻𝑓 is the gradient of 𝑓 (i.e., 𝛻𝑓𝑖 =
𝜕𝑓

𝜕𝑥𝑖
) 

 

 

Optimality conditions – unconstrained opt 



Necessary conditions for 𝑥∗ to be a local minimum of 𝑓 over 𝑅𝑛  

• First order condition: zero slope at 𝑥∗ 

𝛻𝑓 𝑥∗ = 0 

     where 𝛻𝑓 is the gradient of 𝑓 (i.e., 𝛻𝑓𝑖 =
𝜕𝑓

𝜕𝑥𝑖
) 

Def. x* is a stationary point if it satisfies the first order condition. 

 

 

Optimality conditions – unconstrained opt 



Necessary conditions for 𝑥∗ to be a local minimum of 𝑓 over 𝑅𝑛  

• First order condition: zero slope at 𝑥∗ 

𝛻𝑓 𝑥∗ = 0 

     where 𝛻𝑓 is the gradient of 𝑓 (i.e., 𝛻𝑓𝑖 =
𝜕𝑓

𝜕𝑥𝑖
) 

Def. x* is a stationary point if it satisfies the first order condition. 

• Second order condition: nonnegative curvature at 𝑥∗ 

𝛻2𝑓 𝑥∗  positive semidefinite 

      where 𝛻2𝑓 is the Hessian matrix of 𝑓 (i.e., 𝛻2𝑓𝑖𝑗 =
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
) 

 

 

Optimality conditions – unconstrained opt 



First order cost variation 

 
𝑓 𝑥∗ + ∆𝑥 ≅ 𝑓 𝑥∗ + 𝛻𝑓 𝑥∗ ′∆𝑥 

 

Second order cost variation 

 

𝑓 𝑥∗ + ∆𝑥 ≅ 𝑓 𝑥∗ + 𝛻𝑓 𝑥∗ ′∆𝑥 +
1

2
∆𝑥′𝛻2𝑓 𝑥∗ ∆𝑥 

  

Optimality conditions – unconstrained opt 



First order cost variation non-negative 

 

𝛻𝑓 𝑥∗ ′∆𝑥 = 
𝜕𝑓(𝑥∗)

𝜕𝑥𝑖
∆𝑥𝑖

𝑛

𝑖=1
≥ 0, ∀∆𝑥 

 

 first order condition follows 

 

Optimality conditions – unconstrained opt 



First order cost variation non-negative 

 

𝛻𝑓 𝑥∗ ′∆𝑥 = 
𝜕𝑓(𝑥∗)

𝜕𝑥𝑖
∆𝑥𝑖

𝑛

𝑖=1
≥ 0, ∀∆𝑥 

 

 first order condition follows 

 

Second order cost variation non-negative 

 

𝛻𝑓 𝑥∗ ′∆𝑥 +
1

2
∆𝑥′𝛻2𝑓 𝑥∗ ∆𝑥 ≥ 0, ∀∆𝑥 

 

 second order condition follows 

Optimality conditions – unconstrained opt 



Optimality conditions – unconstrained opt 

 These optimality conditions are necessary but not sufficient  

  there may exists points that satisfy both conditions but are 
not local minima 

 

 



Sufficient conditions for 𝑥∗ to be a local minimum of 𝑓 over 𝑅𝑛  

• First order condition: zero slope at 𝑥∗ 

𝛻𝑓 𝑥∗ = 0 

     where 𝛻𝑓 is the gradient of 𝑓 (i.e., 𝛻𝑓𝑖 =
𝜕𝑓

𝜕𝑥𝑖
) 

• Second order condition: positive curvature at 𝑥∗ 

𝛻2𝑓 𝑥∗  positive definite 

      where 𝛻2𝑓 is the Hessian matrix of 𝑓 (i.e., 𝛻2𝑓𝑖𝑗 =
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
) 

 

Optimality conditions – unconstrained opt 



Second order cost variation positive 

 

𝛻𝑓 𝑥∗ ′∆𝑥 +
1

2
∆𝑥′𝛻2𝑓 𝑥∗ ∆𝑥 > 0, ∀∆𝑥 ≠ 0 

 

 

Optimality conditions – unconstrained opt 



Sufficient but not necessary… 

 

 

 

 

 

 

 

 

 

Optimality conditions – unconstrained opt 



 Let 𝑋 ⊆ 𝑅𝑛 be a convex set.  

 If 𝑓: 𝑋 → 𝑅 is convex then  the first order condition  
 

𝛻𝑓 𝑥∗ = 0 
 

 is necessary and sufficient for 𝑥∗ to be a global minimum 

 

 

  

Optimality conditions – unconstrained convex  



 Let 𝑋 ⊆ 𝑅𝑛 be a convex set.  

 If 𝑓: 𝑋 → 𝑅 is convex then  the first order condition  
 

𝛻𝑓 𝑥∗ = 0 
 

 is necessary and sufficient for 𝑥∗ to be a global minimum 

 

 

 all stationary points of a convex function are global minima  

Optimality conditions – unconstrained convex  



 𝑓: 𝑋 → 𝑅 is a convex function if and only if  
 

𝑓 𝑧 ≥ 𝑓 𝑥 + 𝛻𝑓 𝑥 ′ 𝑧 − 𝑥 , ∀𝑧 ∈ 𝑋, ∀𝑥 ∈ 𝑋 

 

 

 

 

 

 

 

 the linear approximation of 𝑓 at a point 𝑥 based on its gradient 
underestimates 𝑓  the first order Taylor expansion at any point 
is a global under-estimator of the function  

Optimality conditions – unconstrained convex 

𝑓 𝑥 + 𝛻𝑓(𝑥)′(𝑧 − 𝑥) 



Optimality conditions – unconstrained convex 



Optimality conditions 

minimize 𝑓 𝑥
    subject to 𝑥 ∈ 𝑋

 

 

𝑓: 𝑅𝑛 → 𝑅 is a continuously differentiable function over 𝑋 

𝑋 is a non-empty closed convex subset of  𝑅𝑛 

 

Characterization of local minima through necessary and/or 
sufficient conditions in: 

• the unconstrained case (𝑋 = 𝑅𝑛) 

• the constrained case (𝑋 ⊂ 𝑅𝑛) 

 



Necessary condition for 𝑥∗ to be a local minimum of 𝑓 over the 
convex set 𝑋 

𝛻𝑓 𝑥∗ ′ 𝑥 − 𝑥∗ ≥ 0, ∀𝑥 ∈ 𝑋 

 

Optimality conditions – constrained opt 
 



Necessary condition for 𝑥∗ to be a local minimum of 𝑓 over the 
convex set 𝑋 

𝛻𝑓 𝑥∗ ′ 𝑥 − 𝑥∗ ≥ 0, ∀𝑥 ∈ 𝑋 

 

Def. x* is a stationary point if it satisfies this necessary condition. 

Optimality conditions – constrained opt 
 



 Proof: 

 First order cost variation 
𝑓 𝑥∗ + ∆𝑥 ≅ 𝑓 𝑥∗ + 𝛻𝑓 𝑥∗ ′∆𝑥 

  Since 𝑥∗ is a local minimum  
𝛻𝑓 𝑥∗ ′∆𝑥 ≥ 0 

 for any feasible (small) variation ∆𝑥, i.e., any ∆𝑥 such that   
𝑥∗ + ∆𝑥 ∈ 𝑋 

 Since 𝑋 is convex, feasible variations are of the form 𝑥 − 𝑥∗ with 
𝑥 ∈ 𝑋, which leads to the optimality condition 

 
𝛻𝑓 𝑥∗ ′ 𝑥 − 𝑥∗ ≥ 0, ∀𝑥 ∈ 𝑋 

  

 

Optimality conditions – constrained opt 



Necessary condition for 𝑥∗ to be a local minimum of 𝑓 over the 
convex set 𝑋 

𝛻𝑓 𝑥∗ ′ 𝑥 − 𝑥∗ ≥ 0, ∀𝑥 ∈ 𝑋 

   

 Geometric interpretation:  

 the gradient 𝛻𝑓 𝑥∗  makes an  
angle smaller than or equal to  
90° with any feasible variation  
𝑥 − 𝑥∗ 

 

Optimality conditions – constrained opt 
 



Necessary condition for 𝑥∗ to be a local minimum of 𝑓 over the 
convex set 𝑋 

𝛻𝑓 𝑥∗ ′ 𝑥 − 𝑥∗ ≥ 0, ∀𝑥 ∈ 𝑋 

   

 Example of failure if 𝑋 non convex 

 

 

 

 

 

 

 

  

Optimality conditions – constrained opt 
 



Necessary condition for 𝑥∗ to be a local minimum of 𝑓 over the 
convex set 𝑋 

𝛻𝑓 𝑥∗ ′ 𝑥 − 𝑥∗ ≥ 0, ∀𝑥 ∈ 𝑋 

   

 Example of failure if 𝑋 non convex 

 

 

 

 

 

 
 

 𝑥 − 𝑥∗with 𝑥 ∈ 𝑋 is not a feasible direction in this case 

Optimality conditions – constrained opt 
 



Necessary condition for 𝑥∗ to be a local minimum of 𝑓 over the 
convex set 𝑋 

𝛻𝑓 𝑥∗ ′ 𝑥 − 𝑥∗ ≥ 0, ∀𝑥 ∈ 𝑋 

 

If 𝑓 is convex over 𝑋, then, this condition is also sufficient for 𝑥∗ 
to be a (global) minimum of 𝑓 

  in the convex case stationary points are all global minima 

Optimality conditions – constrained opt 
 



Necessary condition for 𝑥∗ to be a local minimum of 𝑓 over the 
convex set 𝑋 

𝛻𝑓 𝑥∗ ′ 𝑥 − 𝑥∗ ≥ 0, ∀𝑥 ∈ 𝑋 

 

If 𝑓 is convex over 𝑋 then this condition is also sufficient for 𝑥∗ 
to be a (global) minimum of 𝑓 

  

Proof [convex f]: 

 
∀𝑥 ∈ 𝑋, 𝑓 𝑥 ≥ 𝑓 𝑥∗ + 𝛻𝑓 𝑥∗ ′ 𝑥 − 𝑥∗  [𝑓 convex] 
                                  ≥ 𝑓 𝑥∗  necessary condition above  

  𝑥∗ is a global minimum  

Optimality conditions – constrained opt 
 



Example of constrained convex optimization 

 Projection over a convex set 

  Let 𝑧 ∈ 𝑅𝑛 and 𝑋 ⊆ 𝑅𝑛be a non-empty closed  convex set.   

 Then, problem  
minimize 𝑓 𝑥 = 𝑧 − 𝑥 2

subject to 𝑥 ∈ 𝑋                     
 

 

 has a unique solution P𝑋[𝑧], which is the projection of 𝑧 on the 
convex set 𝑋 according to the  Euclidean norm 

  



 Proof [existence and uniqueness]: 

 Existence  

 it satisfies the sufficient condition for the existence of a 
minimum: 

 𝑓 continuous, 𝑋 closed, and 𝑓 coercive ( lim    
𝑥 →∞
𝑓 𝑥 = +∞) 

 Uniqueness  

  𝑓 𝑥 = 𝑧 − 𝑥 2 is strictly convex 

 

 

Projection over a convex set 



Projection over a convex set 

 Projection Theorem 

  Let 𝑧 ∈ 𝑅𝑛 and 𝑋 ⊆ 𝑅𝑛be a non-empty closed  convex set.   

 Then, we have that: 

 𝑥∗ ∈ 𝑋 is the projection of 𝑧 on 𝑋, i.e., 𝑥∗ = P𝑋[𝑧], if and only if  
𝑧 − 𝑥∗ ′ 𝑥 − 𝑥∗ ≤ 0, ∀𝑥 ∈ 𝑋 

 

   



Projection over a convex set 

 Projection Theorem 

  Let 𝑧 ∈ 𝑅𝑛 and 𝑋 ⊆ 𝑅𝑛be a non-empty closed  convex set.   

 Then, we have that: 

 𝑥∗ ∈ 𝑋 is the projection of 𝑧 on 𝑋, i.e., 𝑥∗ = P𝑋[𝑧], if and only if  
𝑧 − 𝑥∗ ′ 𝑥 − 𝑥∗ ≤ 0, ∀𝑥 ∈ 𝑋 

 

 Geometric interpretation:  

  𝑥∗ is the projection of 𝑧 on 𝑋  
if and only if the angle between  
z − 𝑥∗and every feasible variation  
𝑥 − 𝑥∗ is larger than or equal to 90° 

   



Projection over a convex set 

 Projection Theorem 

  Let 𝑧 ∈ 𝑅𝑛 and 𝑋 ⊆ 𝑅𝑛be a non-empty closed  convex set.   

 Then, we have that: 

 𝑥∗ ∈ 𝑋 is the projection of 𝑧 on 𝑋, i.e., 𝑥∗ = P𝑋[𝑧], if and only if  
𝑧 − 𝑥∗ ′ 𝑥 − 𝑥∗ ≤ 0, ∀𝑥 ∈ 𝑋 

  Proof: 
minimize 𝑓 𝑥 = 𝑧 − 𝑥 2

subject to 𝑥 ∈ 𝑋                     
 

 

 is a convex optimization problem. This implies that    

 𝑥∗ = P𝑋[𝑧] if and only if  
𝛻𝑓 𝑥∗ ′ 𝑥 − 𝑥∗ ≥ 0, ∀𝑥 ∈ 𝑋 

      where 𝛻𝑓 𝑥∗ = −2(z − 𝑥∗) 

  



Projection over a convex set 

 Projection Theorem 

  Let 𝑋 ⊆ 𝑅𝑛 be a non-empty closed  convex set.   

 The projection map 𝑇: 𝑅𝑛 → 𝑋 defined by  
𝑇 𝑧 = P𝑋[𝑧] 

 is continuous and nonexpansive, i.e.,  

𝑇 𝑧 − 𝑇(𝑦) ≤ 𝑧 − 𝑦 , ∀𝑧, 𝑦 ∈ 𝑅𝑛 

   



 

• Constrained and convex optimization 

• Optimality conditions 

• Descent iterative methods: gradient algorithms 

• Convergence results 

 

 

 

Outline 
 



 Direct use of the optimality conditions to obtain a stationary 
(possible a minimum) point is not a viable approach except for 
special cases.  

  

 Optimality conditions are useful in the design and analysis of 
iterative algorithms for determining a minimum. 

  

 Termination conditions are typically based on checking if the 
optimality conditions are satisfied for the current candidate 
solution. 

 

 

 

How to determine a minimum? 



minimize 𝑓 𝑥
    subject to 𝑥 ∈ 𝑋

 

 

𝑓: 𝑅𝑛 → 𝑅 is a continuously differentiable function over 𝑋 

𝑋 is a non-empty closed convex subset of  𝑅𝑛 

 

Idea: iteratively update a tentative solution by moving along a 
descent direction so as to converge to a minimum  

• Gradient methods 

Iterative descent methods 



 At each 𝑘, the (feasible) tentative solution is updated as follows  

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 , 𝑘 = 0,1,… 

 where 𝛼𝑘 is a positive stepsize and 𝑑𝑘 must be a feasible 
direction satisfying the descent condition   

     𝛻𝑓 𝑥𝑘
′𝑑𝑘 < 0 

  

 In this way, the first order cost variation   
𝑓 𝑥𝑘+1 − 𝑓 𝑥𝑘 ≅ 𝛻𝑓 𝑥𝑘

′𝛼𝑘𝑑𝑘 

 is negative and, for sufficiently small 𝛼𝑘, 𝑥𝑘+1 is feasible and the 
cost 𝑓 decreases 

  

Gradient methods 



 At each 𝑘, the (feasible) tentative solution is updated as follows  

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 , 𝑘 = 0,1,… 

 where 𝛼𝑘 is a positive stepsize and 𝑑𝑘 must be a feasible 
direction satisfying the descent condition   

     𝛻𝑓 𝑥𝑘
′𝑑𝑘 < 0 

  

 Stopping criterion:  
optimality conditions satisfied at the current iterate, i.e.,   

 𝛻𝑓(𝑥𝑘+1) = 0 for the unconstrained case 

 𝛻𝑓 𝑥𝑘+1
′ 𝑥 − 𝑥𝑘+1 ≥ 0, ∀𝑥 ∈ 𝑋 for the constrained case 

 

 

  

Gradient methods 



 

• Starts with a feasible 𝑥0 ∈ 𝑋 

• Generates a sequence 𝑥𝑘  according to 
𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 , 𝑘 = 0,1,… 

 where if 𝑥𝑘 is not stationary, 𝑑𝑘 is a feasible direction at 𝑥𝑘 
which is also a descent direction, i.e.,  

𝛻𝑓 𝑥𝑘
′𝑑𝑘 < 0 

 and the stepsize 𝛼𝑘is chosen to be positive and such that 
𝑥𝑘 + 𝛼𝑘𝑑𝑘 ∈ 𝑋 

• If 𝑥𝑘+1 is stationary, i.e., it satisfies the optimality conditions 
then, the method stops.  

 

  

 Gradient method: iterative scheme 



minimize 𝑓 𝑥
    subject to 𝑥 ∈ 𝑋

 

 

𝑓: 𝑅𝑛 → 𝑅 is a continuously differentiable function over 𝑋 

𝑋 is a non-empty closed convex subset of  𝑅𝑛 

 

Gradient methods 

• the unconstrained case (𝑋 = 𝑅𝑛) 

• the constrained case (𝑋 ⊂ 𝑅𝑛) 

Iterative descent methods 



 Many gradient methods take the form: 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 , 𝑘 = 0,1,… 

 with  

𝑑𝑘 = −𝐷𝑘  𝛻𝑓(𝑥𝑘)  

 where 𝐷𝑘  is a positive definite symmetric matrix. 

   

   

       

  

Gradient methods – unconstrained opt 



 Many gradient methods take the form: 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 , 𝑘 = 0,1,… 

 with  

𝑑𝑘 = −𝐷𝑘  𝛻𝑓(𝑥𝑘)  

 where 𝐷𝑘  is a positive definite symmetric matrix. 

   

 Indeed, if 𝛻𝑓(𝑥𝑘) ≠ 0,  

 
𝛻𝑓 𝑥𝑘

′𝑑𝑘 = −𝛻𝑓 𝑥𝑘
′𝐷𝑘  𝛻𝑓(𝑥𝑘) < 0 

  

  

       

  

Gradient methods – unconstrained opt 



 Many gradient methods take the form: 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 , 𝑘 = 0,1,… 

 with  

𝑑𝑘 = −𝐷𝑘  𝛻𝑓(𝑥𝑘)  

 where 𝐷𝑘  is a positive definite symmetric matrix. 

  Steepest descent:  𝑑𝑘 = −𝛻𝑓(𝑥𝑘) 

  

  

Gradient methods – unconstrained opt 



 Many gradient methods take the form: 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 , 𝑘 = 0,1,… 

 with  

𝑑𝑘 = −𝐷𝑘  𝛻𝑓(𝑥𝑘)  

 where 𝐷𝑘  is a positive definite symmetric matrix. 

 Newton’s method:   𝑑𝑘 = −[𝛻
2𝑓 𝑥𝑘 ]

−1𝛻𝑓(𝑥𝑘) 

  

       𝛼𝑘 = 1, 𝑘 = 1,2,…  

 

       if 𝑓 convex, 𝛻2𝑓 𝑥𝑘   
       positive semidefinite 

  

Gradient methods – unconstrained opt 



• Minimization rule 
𝛼𝑘 = argmin

𝛼≥0
𝑓( 𝑥𝑘 + 𝛼𝑑𝑘) 

 

Choice of the stepsize 



• Minimization rule 
𝛼𝑘 = argmin

𝛼≥0
𝑓( 𝑥𝑘 + 𝛼𝑑𝑘) 

 

• Constant stepsize  
𝛼𝑘 = 𝑐, 𝑘 = 0,1,… 

 

• Diminishing stepsize 
lim
𝑘→∞
𝛼𝑘 = 0 

 

with  𝛼𝑘
∞
𝑘=0 = ∞ and  𝛼𝑘

2∞
𝑘=0 < ∞ 

 

Choice of the stepsize 



minimize 𝑓 𝑥
    subject to 𝑥 ∈ 𝑋

 

 

𝑓: 𝑅𝑛 → 𝑅 is a continuously differentiable function over 𝑋 

𝑋 is a non-empty closed convex subset of  𝑅𝑛 

 

Gradient methods 

• the unconstrained case (𝑋 = 𝑅𝑛) 

• the constrained case (𝑋 ⊂ 𝑅𝑛) 

Iterative descent methods 



 At each 𝑘, the (feasible) tentative solution is updated as follows  

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 , 𝑘 = 0,1,… 

 where 𝛼𝑘 is a positive stepsize and 𝑑𝑘 must be a feasible 
direction satisfying the descent condition   

     𝛻𝑓 𝑥𝑘
′𝑑𝑘 < 0 

  

  

 

  

Gradient methods 



 the descent directions have to be feasible so as to maintain 
feasibility of the iterates 

   

 

Gradient methods – constrained opt 



How to easily obtain a feasible direction 𝑑𝑘 at 𝑥𝑘? 

 

Gradient methods – constrained opt 



How to easily obtain a feasible direction 𝑑𝑘 at 𝑥𝑘? 

 

Since X is convex, all feasible directions can be expressed as 
𝑑𝑘 = 𝑥 𝑘 − 𝑥𝑘  

with 𝑥 𝑘 ∈ 𝑋 

Gradient methods – constrained opt 



How to easily obtain a feasible direction 𝑑𝑘 at 𝑥𝑘? 

 

Since X is convex, all feasible directions can be expressed as 
𝑑𝑘 = 𝑥 𝑘 − 𝑥𝑘  

with 𝑥 𝑘 ∈ 𝑋 

We then get 
𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 = 𝑥𝑘 + 𝛼𝑘(𝑥 𝑘 − 𝑥𝑘) 

which belongs to 𝑋 for any 𝛼𝑘 ∈ (0,1]. 

 

Gradient methods – constrained opt 



How to easily obtain a feasible direction 𝑑𝑘 at 𝑥𝑘? 

 

Since X is convex, all feasible directions can be expressed as 
𝑑𝑘 = 𝑥 𝑘 − 𝑥𝑘  

with 𝑥 𝑘 ∈ 𝑋 

We then get 
𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 = 𝑥𝑘 + 𝛼𝑘(𝑥 𝑘 − 𝑥𝑘) 

which belongs to 𝑋 for any 𝛼𝑘 ∈ (0,1]. 

 

 need to choose 𝑥 𝑘 ∈ 𝑋 such that   
𝛻𝑓 𝑥𝑘

′(𝑥 𝑘 − 𝑥𝑘) < 0 

 [descent condition] 

Gradient methods – constrained opt 



𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘(𝑥 𝑘 − 𝑥𝑘) 

     

  

  

Gradient methods – constrained opt 



𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘(𝑥 𝑘 − 𝑥𝑘) 

 Conditional gradient method 
𝑥 𝑘 = argmin

𝑥∈𝑋
𝛻𝑓 𝑥𝑘

′(𝑥 − 𝑥𝑘) 

 

  

Gradient methods – constrained opt 



𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘(𝑥 𝑘 − 𝑥𝑘) 

 Conditional gradient method 
𝑥 𝑘 = argmin

𝑥∈𝑋
𝛻𝑓 𝑥𝑘

′(𝑥 − 𝑥𝑘) 

 

 Note that 𝑥 𝑘 satisfies the descent condition    
𝛻𝑓 𝑥𝑘

′(𝑥 𝑘 − 𝑥𝑘) < 0 

 unless 𝑥𝑘 is a stationary point 

Gradient methods – constrained opt 



𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘(𝑥 𝑘 − 𝑥𝑘) 

    Gradient projection method 
𝑥 𝑘 = P𝑋[𝑥𝑘 − 𝑐𝑘𝛻𝑓(𝑥𝑘)] 

  

  

 

 

  

Gradient methods – constrained opt 



𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘(𝑥 𝑘 − 𝑥𝑘) 

    Gradient projection method 
𝑥 𝑘 = P𝑋[𝑥𝑘 − 𝑐𝑘𝛻𝑓(𝑥𝑘)] 

  

 Note that 𝑥 𝑘 satisfies the descent condition  
𝛻𝑓 𝑥𝑘

′(𝑥 𝑘 − 𝑥𝑘) < 0 

 since by the projection theorem 

            (𝑥𝑘−𝑐𝑘𝛻𝑓(𝑥𝑘) − 𝑥 𝑘)′(𝑥 − 𝑥 𝑘) ≤ 0, ∀𝑥 ∈ 𝑋 

  

 

 

  

Gradient methods – constrained opt 



𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘(𝑥 𝑘 − 𝑥𝑘) 

    Gradient projection method 
𝑥 𝑘 = P𝑋[𝑥𝑘 − 𝑐𝑘𝛻𝑓(𝑥𝑘)] 

  

 Note that 𝑥 𝑘 satisfies the descent condition  
𝛻𝑓 𝑥𝑘

′(𝑥 𝑘 − 𝑥𝑘) < 0 

 since by the projection theorem 

            (𝑥𝑘−𝑐𝑘𝛻𝑓(𝑥𝑘) − 𝑥 𝑘)′(𝑥 − 𝑥 𝑘) ≤ 0, ∀𝑥 ∈ 𝑋 

 and if we set 𝑥 = 𝑥𝑘 , we obtain 

𝛻𝑓(𝑥𝑘)′ (𝑥 𝑘 − 𝑥𝑘) ≤ −
1

𝑐𝑘
𝑥 𝑘 − 𝑥𝑘

2 

 

 

 

  

Gradient methods – constrained opt 



𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘(𝑥 𝑘 − 𝑥𝑘) 

    Gradient projection method 
𝑥 𝑘 = P𝑋[𝑥𝑘 − 𝑐𝑘𝛻𝑓(𝑥𝑘)] 

 If 𝛼𝑘 = 1, then,  
𝑥𝑘+1 = 𝑥 𝑘 = P𝑋[𝑥𝑘 − 𝑐𝑘𝛻𝑓(𝑥𝑘)] 

 Gradient projection reduces to a steepest descent step when  
𝑥𝑘 − 𝑐𝑘𝛻𝑓(𝑥𝑘) ∈ 𝑋 

 

  

 

 

  

Gradient methods – constrained opt 



𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘(𝑥 𝑘 − 𝑥𝑘) 

    Gradient projection method 
𝑥𝑘+1 = P𝑋[𝑥𝑘 − 𝑐𝑘𝛻𝑓(𝑥𝑘)] 

  

  

 

 

  

Gradient methods – constrained opt 

𝑥𝑘+1 = 𝑥𝑘 − 𝑐𝑘𝛻𝑓(𝑥𝑘) 

𝑥𝑘+2 − 𝑐𝑘+2𝛻𝑓(𝑥𝑘+2) 

𝑥𝑘+1 − 𝑐𝑘+1𝛻𝑓(𝑥𝑘+1) 



𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘(𝑥 𝑘 − 𝑥𝑘) 

 Gradient projection method: 𝑥𝑘+1 = P𝑋[𝑥𝑘 − 𝑐𝑘𝛻𝑓(𝑥𝑘)] 

 The algorithm stops when  
𝑥𝑘+1 = P𝑋[𝑥𝑘 − 𝑐𝑘𝛻𝑓(𝑥𝑘)] = 𝑥𝑘 

 and this occurs if and only if 𝑥𝑘+1 = 𝑥𝑘 = 𝑥
∗ is a stationary point. 

  

 

  

 

 

 

  

Gradient methods – constrained opt 



𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘(𝑥 𝑘 − 𝑥𝑘) 

 Gradient projection method: 𝑥𝑘+1 = P𝑋[𝑥𝑘 − 𝑐𝑘𝛻𝑓(𝑥𝑘)] 

 The algorithm stops when  
𝑥𝑘+1 = P𝑋[𝑥𝑘 − 𝑐𝑘𝛻𝑓(𝑥𝑘)] = 𝑥𝑘 

 and this occurs if and only if 𝑥𝑘+1 = 𝑥𝑘 = 𝑥
∗ is a stationary point. 

 Proof: a stationary point has to satisfy  
𝛻𝑓 𝑥∗ ′ 𝑥 − 𝑥∗ ≥ 0, ∀𝑥 ∈ 𝑋 

 which is equivalent to 
((𝑥∗ − 𝛾𝛻𝑓 𝑥∗)) − 𝑥∗ ′ 𝑥 − 𝑥∗ ≤ 0, ∀𝑥 ∈ 𝑋, ∀𝛾 > 0, 

  

  

 

 

 

  

Gradient methods – constrained opt 



Projection over a convex set 

 Projection Theorem 

  Let 𝑧 ∈ 𝑅𝑛 and 𝑋 ⊆ 𝑅𝑛be a non-empty closed  convex set.   

 Then, we have that: 

 𝑥∗ ∈ 𝑋 is the projection of 𝑧 on 𝑋, i.e., 𝑥∗ = P𝑋[𝑧], if and only if  
𝑧 − 𝑥∗ ′ 𝑥 − 𝑥∗ ≤ 0, ∀𝑥 ∈ 𝑋 

 

   



𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘(𝑥 𝑘 − 𝑥𝑘) 

 Gradient projection method: 𝑥𝑘+1 = P𝑋[𝑥𝑘 − 𝑐𝑘𝛻𝑓(𝑥𝑘)] 

 The algorithm stops when  
𝑥𝑘+1 = P𝑋[𝑥𝑘 − 𝑐𝑘𝛻𝑓(𝑥𝑘)] = 𝑥𝑘 

 and this occurs if and only if 𝑥𝑘+1 = 𝑥𝑘 = 𝑥
∗ is a stationary point. 

 Proof: a stationary point has to satisfy  
𝛻𝑓 𝑥∗ ′ 𝑥 − 𝑥∗ ≥ 0, ∀𝑥 ∈ 𝑋 

 which is equivalent to 
((𝑥∗ − 𝛾𝛻𝑓 𝑥∗)) − 𝑥∗ ′ 𝑥 − 𝑥∗ ≤ 0, ∀𝑥 ∈ 𝑋, ∀𝛾 > 0, 

 that is satisfied if and only if 𝑥∗ is the projection of  
z = 𝑥∗ − 𝛾𝛻𝑓(𝑥∗) on 𝑋 

 P𝑋[𝑥
∗ − 𝑐𝑘𝛻𝑓(𝑥

∗)] = 𝑥∗ is stationary 

 

  

 

 

 

  

Gradient methods – constrained opt 



• Minimization rule 
𝛼𝑘 = argmin

𝛼∈[0,1]
𝑓( 𝑥𝑘 + 𝛼𝑑𝑘) 

 

• Constant stepsize  
𝛼𝑘 = 𝑐, 𝑘 = 0,1,… 

 

• Diminishing stepsize 
lim
𝑘→∞
𝛼𝑘 = 0 

 

with  𝛼𝑘
∞
𝑘=0 = ∞ and  𝛼𝑘

2∞
𝑘=0 < ∞ 

Choice of the stepsize 



 

• Constrained and convex optimization 

• Optimality conditions 

• Descent iterative methods: gradient algorithms 

• Convergence results 

 

 

Outline 
 



minimize 𝑓 𝑥
    subject to 𝑥 ∈ 𝑋

 

 

𝑓: 𝑅𝑛 → 𝑅 is a continuously differentiable function over 𝑋 

𝑋 is a non-empty closed convex subset of  𝑅𝑛 

 

Only convergence to stationary points can be guaranteed.  
 

 

 

In the convex case, convergence to a global minimum can be 
guaranteed,  since each stationary point is a global minimum 

 

Gradient methods: convergence 



minimize 𝑓 𝑥
    subject to 𝑥 ∈ 𝑋

 

 

𝑓: 𝑅𝑛 → 𝑅 is a continuously differentiable convex function over 𝑋 

𝑋 is a non-empty closed convex subset of  𝑅𝑛 

Properties: 

(a) A local minimum of 𝑓 over 𝑋 is also a global minimum. If 𝑓 is 
strictly convex, then, there exists at most one global minimum 

(b) The optimality conditions are necessary and sufficient for a 
point to be a global minimum of 𝑓 over 𝑋 or, equivalently, all 
stationary points are global minima 

(c) Convergence to a stationary point means convergence to a 
global minimum    

 

Convex optimization 



     Since in gradient methods 
𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 , 𝑘 = 0,1,… 

 where 𝑑𝑘 satisfies the descent condition   

     𝛻𝑓 𝑥𝑘
′𝑑𝑘 < 0 

 

 if  𝑑𝑘 tends to be orthogonal to the gradient 𝛻𝑓(𝑥𝑘) when 𝑥𝑘 
approaches a nonstationary point, then, there is the risk of 
getting stuck near such a point  
 

  

Gradient methods: convergence 



     Since in gradient methods 
𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 , 𝑘 = 0,1,… 

 where 𝑑𝑘 satisfies the descent condition   

     𝛻𝑓 𝑥𝑘
′𝑑𝑘 < 0 

 

 if  𝑑𝑘 tends to be orthogonal to the gradient 𝛻𝑓(𝑥𝑘) when 𝑥𝑘 
approaches a nonstationary point, then, there is the risk of 
getting stuck near such a point  
  

  

 technical conditions are considered on 𝑑𝑘 for this not to happen. 
They are naturally satisfied or enforced in the algorithm  

Gradient methods: convergence 



 Gradient related condition: 

 For any subsequence 𝑥𝑘 𝑘∈𝐾 that converges to a nonstationary 
point, the corresponding subsequence 𝑑𝑘 𝑘∈𝐾 is bounded and 
satisfies 

limsup
𝑘→∞, 𝑘∈𝐾

𝛻𝑓(𝑥𝑘)′𝑑𝑘 < 0 

 

  

Gradient methods: convergence 



 Gradient related condition: 

 For any subsequence 𝑥𝑘 𝑘∈𝐾 that converges to a nonstationary 
point, the corresponding subsequence 𝑑𝑘 𝑘∈𝐾 is bounded and 
satisfies 

limsup
𝑘→∞, 𝑘∈𝐾

𝛻𝑓(𝑥𝑘)′𝑑𝑘 < 0 

 

 This rules out the possibility of converging to a nonstationary 
point through a sequence characterized by directions 𝑑𝑘 
orthogonal to the gradient 𝛻𝑓(𝑥𝑘)  

Gradient methods: convergence 



 Proposition [stationarity of limit points for gradient methods] 

 Let 𝑥𝑘  be a sequence generated by a gradient method 
according to 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 . 

 Assume that 𝑑𝑘  satisfies the gradient related condition and 
𝛼𝑘is chosen by the minimization rule  

𝛼𝑘 = argmin
𝛼≥0
𝑓( 𝑥𝑘 + 𝛼𝑑𝑘). 

 Then, every limit point of 𝑥𝑘  is a stationary point.  

  

 

  

 

Convergence results – unconstrained opt 



 Proposition [stationarity of limit points for gradient methods] 

 Let 𝑥𝑘  be a sequence generated by a gradient method 
according to 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 . 

 Assume that 𝑑𝑘  satisfies the gradient related condition and 
𝛼𝑘is chosen by the minimization rule  

𝛼𝑘 = argmin
𝛼≥0
𝑓( 𝑥𝑘 + 𝛼𝑑𝑘). 

 Then, every limit point of 𝑥𝑘  is a stationary point.  

 Remark: 

 𝑑𝑘 = −𝐷𝑘𝛻𝑓(𝑥𝑘)  with 𝐷𝑘  positive definite with bounded 
eigenvalues, i.e., 𝑐1 𝑧

2 ≤ 𝑧′𝐷𝑘𝑧 ≤ 𝑐2 𝑧
2, satisfies the 

gradient related condition 

 

 

  

 

Convergence results – unconstrained opt 



 Proposition [stationarity of limit points for gradient methods] 

 Let 𝑥𝑘  be a sequence generated by a gradient method 
according to 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 . 

 Assume that 𝑑𝑘  satisfies the gradient related condition and 
𝛼𝑘is chosen by the minimization rule  

𝛼𝑘 = argmin
𝛼∈[0,1]

𝑓( 𝑥𝑘 + 𝛼𝑑𝑘). 

 Then, every limit point of 𝑥𝑘  is a stationary point.  

 

 

  

 

Convergence results – constrained opt 



 Proposition [stationarity of limit points for gradient methods] 

 Let 𝑥𝑘  be a sequence generated by a gradient method 
according to 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 . 

 Assume that 𝑑𝑘  satisfies the gradient related condition and 
𝛼𝑘is chosen by the minimization rule  

𝛼𝑘 = argmin
𝛼∈[0,1]

𝑓( 𝑥𝑘 + 𝛼𝑑𝑘). 

 Then, every limit point of 𝑥𝑘  is a stationary point.  

 Remark: 

 Conditional gradient and gradient projection (with 𝑐𝑘 constant) 
methods satisfy the gradient related condition 

 

  

 

Convergence results – constrained opt 



 What about the constant and diminishing stepize rules? 

 

  

 

  

  

 

 

  

Convergence results 



 What about the constant and diminishing stepize rules? 

 

 Some onvergence results have been proven under some 
regularity assumption on the gradient (Lipschitz continuity): 
i) 𝑓 continuously differentiable  
ii) there exists 𝐿 > 0 such that  

𝛻𝑓 𝑥 − 𝛻𝑓(𝑦) ≤ 𝐿 𝑥 − 𝑦 , ∀𝑥, 𝑦 ∈ 𝑅𝑛 

 

 

  

  

 

 

  

Convergence results 



Convergence results – unconstrained opt 

 Proposition [convergence for a constant stepsize] 

 Let 𝑥𝑘  be a sequence generated by a gradient method 
𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 . 

 Assume that 𝑑𝑘  satisfies the gradient related condition and that 
the gradient is Lipschitz continuous with constant 𝐿 > 0. If there 
exists 𝜀 such that for all 𝑘 

0 < 𝜀 ≤ 𝛼𝑘 ≤
(2 − 𝜀) 𝛻𝑓(𝑥𝑘)′𝑑𝑘
𝐿 𝑑𝑘

2
 

 Then, every limit point of 𝑥𝑘  is a stationary point.  

  

 

 

 

  



Convergence results – unconstrained opt 

 Proposition [convergence for a constant stepsize] 

 Let 𝑥𝑘  be a sequence generated by a gradient method 
𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 . 

 Assume that 𝑑𝑘  satisfies the gradient related condition and that 
the gradient is Lipschitz continuous with constant 𝐿 > 0. If there 
exists 𝜀 such that for all 𝑘 

0 < 𝜀 ≤ 𝛼𝑘 ≤
(2 − 𝜀) 𝛻𝑓(𝑥𝑘)′𝑑𝑘
𝐿 𝑑𝑘

2
 

 Then, every limit point of 𝑥𝑘  is a stationary point.  

 Remark: 

 𝑑𝑘 = −𝐷𝑘𝛻𝑓(𝑥𝑘)  with 𝐷𝑘  positive definite with bounded 
eigenvalues, i.e., 𝑐1 𝑧

2 ≤ 𝑧′𝐷𝑘𝑧 ≤ 𝑐2 𝑧
2 ,  𝑐2 ≥ 𝑐1 > 0, 

satisfies the gradient related condition and 0 < 𝜀 ≤ 𝛼𝑘 ≤
(2−𝜀)𝑐2

𝐿𝑐1
2  

 

 

 

 

  



 Convergence results for the constant stepsize case are specific to 
the considered method.  

 Here, we consider the gradient projection method and provide 
statement and proof. 

 We first need to show an instrumental lemma. 

Convergence results – constrained opt 



Descent Lemma 

If the gradient 𝛻𝑓 is Lipschitz continuous with constant 𝐿 > 0, then,  

𝑓 𝑥 + 𝑦 − 𝑓 𝑥 ≤ 𝑦′𝛻𝑓 𝑥 +
𝐿

2
𝑦 2, ∀𝑥, 𝑦 

Convergence results – gradient projection 



Descent Lemma 

If the gradient 𝛻𝑓 is Lipschitz continuous with constant 𝐿 > 0, then,  

𝑓 𝑥 + 𝑦 − 𝑓 𝑥 ≤ 𝑦′𝛻𝑓 𝑥 +
𝐿

2
𝑦 2, ∀𝑥, 𝑦 

Proof. Set g 𝛼 = 𝑓 𝑥 + 𝛼𝑦 . Then,  

𝑓 𝑥 + 𝑦 − 𝑓 𝑥 = 𝑔 1 − 𝑔 0 =  
𝑑𝑔

𝑑𝛼
𝛼 𝑑𝛼

1

0

=  𝑦′𝛻𝑓 𝑥 + 𝛼𝑦 𝑑𝛼
1

0

 

Convergence results – gradient projection 



Descent Lemma 

If the gradient 𝛻𝑓 is Lipschitz continuous with constant 𝐿 > 0, then,  

𝑓 𝑥 + 𝑦 − 𝑓 𝑥 ≤ 𝑦′𝛻𝑓 𝑥 +
𝐿

2
𝑦 2, ∀𝑥, 𝑦 

Proof. Set g 𝛼 = 𝑓 𝑥 + 𝛼𝑦 . Then,  

𝑓 𝑥 + 𝑦 − 𝑓 𝑥 = 𝑔 1 − 𝑔 0 =  
𝑑𝑔

𝑑𝛼
𝛼 𝑑𝛼

1

0

=  𝑦′𝛻𝑓 𝑥 + 𝛼𝑦 𝑑𝛼
1

0

≤  𝑦′𝛻𝑓 𝑥 𝑑𝛼
1

0

+  𝑦′ 𝛻𝑓 𝑥 + 𝛼𝑦 − 𝛻𝑓 𝑥 𝑑𝛼
1

0

 

Convergence results – gradient projection 



Descent Lemma 

If the gradient 𝛻𝑓 is Lipschitz continuous with constant 𝐿 > 0, then,  

𝑓 𝑥 + 𝑦 − 𝑓 𝑥 ≤ 𝑦′𝛻𝑓 𝑥 +
𝐿

2
𝑦 2, ∀𝑥, 𝑦 

Proof. Set g 𝛼 = 𝑓 𝑥 + 𝛼𝑦 . Then,  

𝑓 𝑥 + 𝑦 − 𝑓 𝑥 = 𝑔 1 − 𝑔 0 =  
𝑑𝑔

𝑑𝛼
𝛼 𝑑𝛼

1

0

=  𝑦′𝛻𝑓 𝑥 + 𝛼𝑦 𝑑𝛼
1

0

≤  𝑦′𝛻𝑓 𝑥 𝑑𝛼
1

0

+  𝑦′ 𝛻𝑓 𝑥 + 𝛼𝑦 − 𝛻𝑓 𝑥 𝑑𝛼
1

0

≤ 𝑦′𝛻𝑓 𝑥 + 𝑦  𝐿 𝛼 𝑦 𝑑𝛼
1

0

= 𝑦′𝛻𝑓 𝑥 +
𝐿

2
𝑦 2 

Convergence results – gradient projection 



 Proposition [convergence for a constant stepsize] 

 Let 𝑥𝑘  be a sequence generated by the gradient projection 
method  

𝑥𝑘+1 = P𝑋[𝑥𝑘−𝑐𝛻𝑓(𝑥𝑘)] 

 Suppose that the gradient 𝛻𝑓 is Lipschitz continuous over 𝑋 with 
constant 𝐿 > 0. Then, if  

0 < 𝑐 <
2

𝐿
 

 every limit point of 𝑥𝑘  is stationary. 

 

  

 

Convergence results – gradient projection 



 Proposition [convergence for a constant stepsize] 

 Let 𝑥𝑘  be a sequence generated by the gradient projection 
method  

𝑥𝑘+1 = P𝑋[𝑥𝑘−𝑐𝛻𝑓(𝑥𝑘)] 

 Suppose that the gradient 𝛻𝑓 is Lipschitz continuous over 𝑋 with 
constant 𝐿 > 0. Then, if  

0 < 𝑐 <
2

𝐿
 

 every limit point of 𝑥𝑘  is stationary. 

 

 Remark: if 𝑓 is continuously differentiable and 𝑋 is compact, 
then, Lipschitz continuity of the gradient is guaranteed.  

 

 

Convergence results – gradient projection 



 Proof. 

 By the descent lemma  

𝑓 𝑥 + 𝑦 − 𝑓 𝑥 ≤ 𝑦′𝛻𝑓 𝑥 +
𝐿

2
𝑦 2, ∀𝑥, 𝑦 

 if we set 𝑥 = 𝑥𝑘 and 𝑦 = 𝑥𝑘+1 − 𝑥𝑘, we get  

𝑓 𝑥𝑘+1 − 𝑓 𝑥𝑘 ≤ (𝑥𝑘+1 − 𝑥𝑘)
′𝛻𝑓 𝑥𝑘 +

𝐿

2
𝑥𝑘+1 − 𝑥𝑘

2 

  

  

Convergence results – gradient projection 



 Proof:  

 Observe now that 𝑥𝑘+1 = P𝑋[𝑥𝑘−𝑐𝛻𝑓(𝑥𝑘)] so that by the 
projection theorem 
(𝑥𝑘−𝑐𝛻𝑓(𝑥𝑘) − 𝑥𝑘+1)′(𝑥 − 𝑥𝑘+1) ≤ 0, ∀𝑥 ∈ 𝑋 

 If we set 𝑥 = 𝑥𝑘 , we obtain 

𝛻𝑓(𝑥𝑘)′ (𝑥𝑘+1 − 𝑥𝑘) ≤ −
1

𝑐
𝑥𝑘+1 − 𝑥𝑘

2 

 

Convergence results – gradient projection 



 Proof:  

 By combining the two inequalities that we have just proven, i.e.,   

𝑓 𝑥𝑘+1 − 𝑓 𝑥𝑘 ≤ (𝑥𝑘+1 − 𝑥𝑘)
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𝐿
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𝑥𝑘+1 − 𝑥𝑘
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1

𝑐
𝑥𝑘+1 − 𝑥𝑘
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 we get  

𝑓 𝑥𝑘+1 ≤ 𝑓 𝑥𝑘 −
1

𝑐
−
𝐿

2
𝑥𝑘+1 − 𝑥𝑘
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 By combining the two inequalities that we have just proven, i.e.,   

𝑓 𝑥𝑘+1 − 𝑓 𝑥𝑘 ≤ (𝑥𝑘+1 − 𝑥𝑘)
′𝛻𝑓 𝑥𝑘 +
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𝛻𝑓(𝑥𝑘)′ (𝑥𝑘+1 − 𝑥𝑘) ≤ −
1

𝑐
𝑥𝑘+1 − 𝑥𝑘
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 we get  

𝑓 𝑥𝑘+1 ≤ 𝑓 𝑥𝑘 −
1

𝑐
−
𝐿

2
𝑥𝑘+1 − 𝑥𝑘

2 

 If 0 < 𝑐 <
2

𝐿
, then, if 𝑥∗ is the limit point of a subsequence 

𝑥𝑘 𝑘∈𝒦  we have that 𝑓(𝑥𝑘) ↓ 𝑓(𝑥
∗) and then 

lim
𝑘→∞
𝑥𝑘+1 − 𝑥𝑘

2 = 0 

 

 

  

Convergence results – gradient projection 



 Proof:  
lim
𝑘→∞
𝑥𝑘+1 − 𝑥𝑘

2 = 0 

  where 𝑥𝑘+1 = P𝑋[𝑥𝑘−𝑐𝛻𝑓(𝑥𝑘)] = 𝑇 𝑥𝑘 .  

 By the continuity of the projection map,  it then follows that 𝑥∗ 
satisfies 𝑇 𝑥∗ = 𝑥∗ and, hence, it is stationary.  

  

Convergence results – gradient projection 



Convergence results – unconstrained opt 

 Proposition [convergence for a diminishing stepsize] 

 Let 𝑥𝑘  be a sequence generated by a gradient method 
𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 . 

 Assume that the gradient 𝛻𝑓 is Lipschitz continuous with 
constant 𝐿 > 0 and that there exist positive scalars 𝑐1 and 𝑐2 
such If there exists 𝜀 such that for all 𝑘 
𝑐1 𝛻𝑓(𝑥𝑘)

2 ≤ −𝛻𝑓(𝑥𝑘)′𝑑𝑘, 𝑑𝑘
2 ≤ 𝑐2 𝛻𝑓(𝑥𝑘)

2 

 Then, if a diminishing stepsize is adopted, every limit point of 
𝑥𝑘  is a stationary point.  

  

 

 

  



Convergence results – unconstrained opt 

 Proposition [convergence for a diminishing stepsize] 

 Let 𝑥𝑘  be a sequence generated by a gradient method 
𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 . 

 Assume that the gradient 𝛻𝑓 is Lipschitz continuous with 
constant 𝐿 > 0 and that there exist positive scalars 𝑐1 and 𝑐2 
such If there exists 𝜀 such that for all 𝑘 
𝑐1 𝛻𝑓(𝑥𝑘)

2 ≤ −𝛻𝑓(𝑥𝑘)′𝑑𝑘, 𝑑𝑘
2 ≤ 𝑐2 𝛻𝑓(𝑥𝑘)

2 

 Then, if a diminishing stepsize is adopted, every limit point of 
𝑥𝑘  is a stationary point.  

 Remarks: 

 𝑑𝑘 = −𝐷𝑘𝛻𝑓(𝑥𝑘)  with 𝐷𝑘  positive definite with bounded 
eigenvalues satisfies the conditions above.  

 Similar results hold for the constrained optimization case. 
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