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• Proximal algorithm 

 

Main references:  

D. Bertsekas. Nonlinear programming. Athena scientific, 1999  

D. Bertsekas.  Convex Optimization Theory. Athena Scientific, 2009 

Remark: pictures are taken from the reference books 

 

Outline 
 



minimize 𝑓 𝑥
    subject to 𝑥 ∈ 𝑋

 

 

𝑓: 𝑅𝑛 → 𝑅 is a continuously differentiable convex function over 𝑋 

𝑋 is a non-empty closed convex subset of  𝑅𝑛 
 

What about non differentiable functions? 

Convex optimization 



𝑔 is a subgradient of 𝑓 (not necessarily convex) at 𝑥 if  

𝑓 𝑦 ≥ 𝑓 𝑥 + 𝑔′ 𝑦 − 𝑥 , ∀𝑦 ∈ 𝑅𝑛 

 

 

 

 

 

 

Subgradient of a function 



𝑔 is a subgradient of 𝑓 (not necessarily convex) at 𝑥 if  

𝑓 𝑦 ≥ 𝑓 𝑥 + 𝑔′ 𝑦 − 𝑥 , ∀𝑦 ∈ 𝑅𝑛 

 

• subgradient provides an affine global underestimator of 𝑓 

 

 

 

 

 

Subgradient of a function 



𝑔 is a subgradient of 𝑓 (not necessarily convex) at 𝑥 if  

𝑓 𝑦 ≥ 𝑓 𝑥 + 𝑔′ 𝑦 − 𝑥 , ∀𝑦 ∈ 𝑅𝑛 

 

• subgradient provides an affine global under-estimator of 𝑓 

• if 𝑓 convex, then, there is at least one subgradient at every 
interior point of 𝑋 

• If 𝑓 is convex and differentiable, 𝛻𝑓(𝑥) is a subgradient of 𝑓 at 𝑥  
 

 

 

 

 

Subgradient of a function 



𝑔 is a subgradient of 𝑓 (not necessarily convex) at 𝑥 if  

𝑓 𝑦 ≥ 𝑓 𝑥 + 𝑔′ 𝑦 − 𝑥 , ∀𝑦 ∈ 𝑅𝑛 

 

• subgradient provides an affine global under-estimator of 𝑓 

• if 𝑓 convex, then, there is at least one subgradient at every 
interior point of 𝑋 

• If 𝑓 is convex and differentiable, 𝛻𝑓(𝑥) is a subgradient of 𝑓 at 𝑥  
This follows from the basic inequality for convex differentiable 𝑓 
𝑓 𝑦 ≥ 𝑓 𝑥 + 𝛻𝑓 𝑥 ′ 𝑦 − 𝑥 , ∀𝑦 ∈ 𝑅𝑛, ∀𝑥 ∈ 𝑅𝑛 

 

 

 

 

 

Subgradient of a function 



Subgradient: an example 



Subgradient: an example 



 The set of all subgradient of 𝑓 at 𝑥  at is called the subdifferential 
of 𝑓 at 𝑥. It is denoted as 𝜕𝑓(𝑥) 

 
𝑓 𝑦 ≥ 𝑓 𝑥 + 𝑔′ 𝑦 − 𝑥 , ∀𝑦 ∈ 𝑅𝑛 

 

 𝜕𝑓(𝑥) is a closed convex set (intersection of closed half spaces, one 
for each 𝑦) 

 𝜕𝑓 𝑥  nonempty if 𝑓 convex 

 𝜕𝑓 𝑥 = {𝛻𝑓(𝑥)} if 𝑓 is differentiable at 𝑥 

 if 𝜕𝑓 𝑥 = 𝑔 , then 𝑓 is differentiable at 𝑥 and 𝑔 = 𝛻𝑓(𝑥) 

 

 

 

 

 

 

Subdifferential of a function 



Example 



Example 



 Let 𝑋 ⊆ 𝑅𝑛 be a convex set and 𝑓: 𝑋 → 𝑅 convex. 

 Necessary and sufficient condition for 𝑥∗ to be a global 
minimum:  

 (i) 𝛻𝑓 𝑥∗ = 0  [if 𝑓 differentiable] 

  

 

 

  

Optimality conditions – unconstrained convex  



 Let 𝑋 ⊆ 𝑅𝑛 be a convex set and 𝑓: 𝑋 → 𝑅 convex. 

 Necessary and sufficient condition for 𝑥∗ to be a global 
minimum:  

 (i) 𝛻𝑓 𝑥∗ = 0  [if 𝑓 differentiable] 

 (ii) 0 ∈ 𝜕𝑓(𝑥∗)  [if 𝑓 non differentiable]  

 

 

 

  

Optimality conditions – unconstrained convex  



Optimality conditions – unconstrained convex  

 Let 𝑋 ⊆ 𝑅𝑛 be a convex set and 𝑓: 𝑋 → 𝑅 convex. 

 Necessary and sufficient condition for 𝑥∗ to be a global 
minimum:  

 (i) 𝛻𝑓 𝑥∗ = 0  [if 𝑓 differentiable] 

 (ii) 0 ∈ 𝜕𝑓(𝑥∗)  [if 𝑓 non differentiable]  

 

 Proof [(ii)]  

  

  



Optimality conditions – unconstrained convex  

 Let 𝑋 ⊆ 𝑅𝑛 be a convex set and 𝑓: 𝑋 → 𝑅 convex. 

 Necessary and sufficient condition for 𝑥∗ to be a global 
minimum:  

 (i) 𝛻𝑓 𝑥∗ = 0  [if 𝑓 differentiable] 

 (ii) 0 ∈ 𝜕𝑓(𝑥∗)  [if 𝑓 non differentiable]  

 

 Proof [(ii)]  

 by definition of subgradient 𝑔 at 𝑥∗ with 𝑔 = 0, we get 

𝑓 𝑦 ≥ 𝑓 𝑥∗ + 0′ 𝑦 − 𝑥∗ , ∀𝑦 ∈ 𝑋 ⟹ 𝑥∗ global minimum 

 viceversa if 𝑥∗ is a global minimum then 

  𝑓 𝑦 ≥ 𝑓 𝑥∗ = 𝑓 𝑥∗ + 0′ 𝑦 − 𝑥∗ , ∀𝑦 ∈ 𝑋 ⟹ 0 ∈ 𝜕𝑓(𝑥∗) 

 

  



 Let 𝑋 ⊆ 𝑅𝑛 be a convex set and 𝑓: 𝑋 → 𝑅 convex. 

 Necessary and sufficient condition for 𝑥∗ to be a global 
minimum:  

 (i) 𝛻𝑓 𝑥∗ ′(𝑦 − 𝑥∗) ≥ 0, ∀𝑦 ∈ 𝑋 [if 𝑓 differentiable] 

 

 

 

 

  

Optimality conditions – constrained convex  



 Let 𝑋 ⊆ 𝑅𝑛 be a convex set and 𝑓: 𝑋 → 𝑅 convex. 

 Necessary and sufficient condition for 𝑥∗ to be a global 
minimum:  

 (i) 𝛻𝑓 𝑥∗ ′(𝑦 − 𝑥∗) ≥ 0, ∀𝑦 ∈ 𝑋 [if 𝑓 differentiable] 

 (ii) there exists a subgradient 𝑔 ∈ 𝜕𝑓(𝑥∗) such that  
𝑔′ 𝑦 − 𝑥∗ ≥ 0, ∀𝑦 ∈ 𝑋 

       [if 𝑓 non differentiable]  

  

 

 

 

  

Optimality conditions – constrained convex  



 Let 𝑋 ⊆ 𝑅𝑛 be a convex set and 𝑓: 𝑋 → 𝑅 convex. 

 Necessary and sufficient condition for 𝑥∗ to be a global 
minimum:  

 (i) 𝛻𝑓 𝑥∗ ′(𝑦 − 𝑥∗) ≥ 0, ∀𝑦 ∈ 𝑋 [if 𝑓 differentiable] 

 (ii) there exists a subgradient 𝑔 ∈ 𝜕𝑓(𝑥∗) such that  
𝑔′ 𝑦 − 𝑥∗ ≥ 0, ∀𝑦 ∈ 𝑋 

       [if 𝑓 non differentiable]  

 Proof [(ii) only sufficient part]  

 by definition of subgradient 𝑔 at 𝑥∗, we get 

𝑓 𝑦 ≥ 𝑓 𝑥∗ + 𝑔′ 𝑦 − 𝑥∗ ≥ 𝑓 𝑥∗ , ∀𝑦 ∈ 𝑋  

  𝑥∗ global minimum 

 

 

  

Optimality conditions – constrained convex  



minimize 𝑓 𝑥
    subject to 𝑥 ∈ 𝑋

 

 

𝑓: 𝑅𝑛 → 𝑅 is a non differentiable convex function over 𝑋 

𝑋 is a non-empty closed convex subset of  𝑅𝑛 
 

 

Convex optimization 



 Subgradient method: 

𝑥𝑘+1 = P𝑋[𝑥𝑘−𝑐𝑘𝑔𝑘] 

 where 𝑔𝑘 ∈ 𝜕𝑓(𝑥𝑘)  

 

 Proposition [convergence for a diminishing stepsize] 

 Let 𝑥𝑘  be a sequence generated by the subgradient projection 
method with 𝑐𝑘 asymptotically vanishing satisfying  𝑐𝑘

∞
𝑘=0 = ∞ 

and  𝑐𝑘
2∞

𝑘=0 < ∞. 

 If function 𝑓 is Lipschitz continuous, then,  𝑥𝑘  converges to a 
global minimum.  

 

 Note: this results holds also for 𝑓 differentiable  

  

Projected subgradient – constrained opt 
 



 Proof.  

 Assume for simplicity that the global minimum is unique and 
denote it by 𝑥∗.  

 
𝑥𝑘+1 − 𝑥

∗ = P𝑋[𝑥𝑘−𝑐𝑘𝑔𝑘] − 𝑥
∗ = P𝑋[𝑥𝑘−𝑐𝑘𝑔𝑘] − P𝑋[𝑥

∗]
≤ [𝑥𝑘−𝑐𝑘𝑔𝑘 − 𝑥

∗  

 since the projection operator is non-expansive. 

  

Projected subgradient – constrained opt 
 



 Proof.  

 Assume for simplicity that the global minimum is unique and 
denote it by 𝑥∗.  

 
𝑥𝑘+1 − 𝑥

∗ = P𝑋[𝑥𝑘−𝑐𝑘𝑔𝑘] − 𝑥
∗ = P𝑋[𝑥𝑘−𝑐𝑘𝑔𝑘] − P𝑋[𝑥

∗]
≤ [𝑥𝑘−𝑐𝑘𝑔𝑘 − 𝑥

∗  

 since the projection operator is non-expansive. 

 We then have 
𝑥𝑘+1 − 𝑥

∗ 2 ≤ [𝑥𝑘−𝑐𝑘𝑔𝑘 − 𝑥
∗ 2   

= 𝑥𝑘 − 𝑥
∗ 2 − 2𝑐𝑘𝑔𝑘

′ 𝑥𝑘 − 𝑥
∗ + 𝑐𝑘

2 𝑔𝑘
2 

  

  

Projected subgradient – constrained opt 
 



 Proof.  

 𝑥𝑘+1 − 𝑥
∗ 2 ≤ 𝑥𝑘 − 𝑥

∗ 2 − 2𝑐𝑘𝑔𝑘
′ 𝑥𝑘 − 𝑥

∗ + 𝑐𝑘
2 𝑔𝑘

2 

  

 Given that 𝑓 is Lipschitz continuous, there exists 𝐿>0 such that 
|𝑓 𝑥𝑘 − 𝑓(𝑦)| ≤ 𝐿 𝑥𝑘 − 𝑦 , ∀𝑦 ∈ 𝑅

𝑛 

 By the definition of subgradient, we have that  
𝑓 𝑦 ≥ 𝑓 𝑥𝑘 + 𝑔𝑘

′ 𝑦 − 𝑥𝑘 , ∀𝑦 ∈ 𝑅
𝑛 

 We then get  
𝑔𝑘
′ 𝑦 − 𝑥𝑘 ≤ |𝑓 𝑦 − 𝑓 𝑥𝑘 | ≤ 𝐿 𝑥𝑘 − 𝑦 , ∀𝑦 ∈ 𝑅

𝑛 

 which leads to 𝑔𝑘 ≤ 𝐿 

  

Projected subgradient – constrained opt 
 



Proof.  

 𝑥𝑘+1 − 𝑥
∗ 2 ≤ 𝑥𝑘 − 𝑥

∗ 2 − 2𝑐𝑘𝑔𝑘
′ 𝑥𝑘 − 𝑥

∗ + 𝑐𝑘
2𝐿2 

  

Since 
𝑔𝑘
′ 𝑥∗ − 𝑥𝑘 ≤ 𝑓 𝑥

∗ − 𝑓 𝑥𝑘  

then  

𝑥𝑘+1 − 𝑥
∗ 2 ≤ 𝑥𝑘 − 𝑥

∗ 2 + 2𝑐𝑘 𝑓 𝑥
∗ − 𝑓 𝑥𝑘 + 𝑐𝑘

2𝐿2 

From this inequality we get that 𝑥𝑘 − 𝑥
∗  converges since 

𝑓 𝑥∗ − 𝑓 𝑥𝑘 < 0.   

Also, by computing  ∞𝑘=0  of both sides, we get: 

2 𝑐𝑘 𝑓 𝑥𝑘 − 𝑓 𝑥
∗  ∞

𝑘=0 ≤ 𝑥0 − 𝑥
∗ 2 − 𝑥∞ − 𝑥

∗ 2 + 𝐿2 𝑐𝑘
2∞

𝑘=0  

Projected subgradient – constrained opt 
 



 Proof.  

2 𝑐𝑘 𝑓 𝑥𝑘 − 𝑓 𝑥
∗  ∞

𝑘=0 ≤ 𝑥0 − 𝑥
∗ 2 − 𝑥∞ − 𝑥

∗ 2 + 𝐿2 𝑐𝑘
2∞

𝑘=0  

entails that  𝑐𝑘 𝑓 𝑥𝑘 − 𝑓 𝑥
∗  ∞

𝑘=0 is bounded.  

Since  𝑐𝑘
∞
𝑘=0 = ∞, then, liminf

𝑘→∞
𝑓 𝑥𝑘 − 𝑓 𝑥

∗ = 0.  

This means 

𝑓 𝑥𝑘 → 𝑓 𝑥
∗  across a subsequence and, due to the continuity of 𝑓,  

𝑥𝑘  → 𝑥
∗ along that subsequence.  

Since 𝑥𝑘 − 𝑥
∗  converges, 𝑥𝑘  → 𝑥

∗ along every subsequence.  

Projected subgradient – constrained opt 
 



 
minimize 𝑓 𝑥
    subject to 𝑥 ∈ 𝑋

 

 

𝑓: 𝑅𝑛 → 𝑅 is convex function over 𝑋 

𝑋 is a non-empty closed convex set of  𝑅𝑛 

 

 

Constrained optimization 



 At each 𝑘, a (feasible) tentative solution is computed as follows  

𝑥𝑘+1 = argmin
𝑥∈𝑋

𝑓 𝑥 +
1

2𝑐𝑘
𝑥 − 𝑥𝑘

2  

 where 𝑐𝑘 is a positive scalar parameter weighting the quadratic 
regularization term that is added to 𝑓 𝑥   

  

Proximal algorithm  



 At each 𝑘, a (feasible) tentative solution is computed as follows  

𝑥𝑘+1 = argmin
𝑥∈𝑋

𝑓 𝑥 +
1

2𝑐𝑘
𝑥 − 𝑥𝑘

2  

 where 𝑐𝑘 is a positive scalar parameter weighting the quadratic 
regularization term that is added to 𝑓 𝑥   

 The regularization term makes the function to be minimized 
strictly convex and coercive so that it has a unique global 
minimum.  

Proximal algorithm  



 At each 𝑘, a (feasible) tentative solution is computed as follows  

𝑥𝑘+1 = argmin
𝑥∈𝑋

𝑓 𝑥 +
1

2𝑐𝑘
𝑥 − 𝑥𝑘

2  

 where 𝑐𝑘 is a positive scalar parameter weighting the quadratic 
regularization term that is added to 𝑓 𝑥   

  

 Cost decreases:  

  𝑓 𝑥𝑘+1 +
1

2𝑐𝑘
𝑥𝑘+1 − 𝑥𝑘

2 ≤ 𝑓(𝑥𝑘) +
1

2𝑐𝑘
𝑥𝑘 − 𝑥𝑘

2 = 𝑓(𝑥𝑘) 

Proximal algorithm  



 At each 𝑘, the (feasible) tentative solution is computed as follows  

𝑥𝑘+1 = argmin
𝑥∈𝑋

𝑓 𝑥 +
1

2𝑐𝑘
𝑥 − 𝑥𝑘

2  

 if 𝑋 = 𝑅𝑛 a necessary and sufficient condition that 𝑥𝑘+1 has to 
satisfy is  

 ∇ℎ 𝑥𝑘+1 = 0 where ℎ 𝑥 = 𝑓 𝑥 +
1

2𝑐𝑘
𝑥 − 𝑥𝑘

2  

if 𝑓 differentiable  

  

Proximal algorithm  



 At each 𝑘, the (feasible) tentative solution is computed as follows  

𝑥𝑘+1 = argmin
𝑥∈𝑋

𝑓 𝑥 +
1

2𝑐𝑘
𝑥 − 𝑥𝑘

2  

 if 𝑋 = 𝑅𝑛 a necessary and sufficient condition that 𝑥𝑘+1 has to 
satisfy is  

 ∇ℎ 𝑥𝑘+1 = 0 where ℎ 𝑥 = 𝑓 𝑥 +
1

2𝑐𝑘
𝑥 − 𝑥𝑘

2  

if 𝑓 differentiable  

 This entails that  
 𝑥𝑘−𝑥𝑘+1
𝑐𝑘

= ∇𝑓 𝑥𝑘+1  

 

  

Proximal algorithm  



Proximal algorithm  

slope is the common  

gradient of 𝑓 𝑥   and  

−
1

2𝑐𝑘
𝑥 − 𝑥𝑘

2 at 𝑥𝑘+1 

that is  
𝑥𝑘 − 𝑥𝑘+1
𝑐𝑘

 



 At each 𝑘, the (feasible) tentative solution is computed as follows  

𝑥𝑘+1 = argmin
𝑥∈𝑋

𝑓 𝑥 +
1

2𝑐𝑘
𝑥 − 𝑥𝑘

2  

 if 𝑋 = 𝑅𝑛 a necessary and sufficient condition that 𝑥𝑘+1 has to 
satisfy is  

 ∇ℎ 𝑥𝑘+1 = 0 where ℎ 𝑥 = 𝑓 𝑥 +
1

2𝑐𝑘
𝑥 − 𝑥𝑘

2  

if 𝑓 differentiable  

 This entails that  
 𝑥𝑘−𝑥𝑘+1
𝑐𝑘

= ∇𝑓 𝑥𝑘+1 ↔ 𝑥𝑘+1 = 𝑥𝑘 − 𝑐𝑘∇𝑓 𝑥𝑘+1  

 nearly a steepest gradient step 

  

Proximal algorithm  



 At each 𝑘, the (feasible) tentative solution is computed as follows  

𝑥𝑘+1 = argmin
𝑥∈𝑋

𝑓 𝑥 +
1

2𝑐𝑘
𝑥 − 𝑥𝑘

2  

 if 𝑋 = 𝑅𝑛 a necessary and sufficient condition that 𝑥𝑘+1 has to 
satisfy is  

 0 ∈ 𝜕ℎ 𝑥𝑘+1   where ℎ 𝑥 = 𝑓 𝑥 +
1

2𝑐𝑘
𝑥 − 𝑥𝑘

2  

if 𝑓 non differentiable  

  

Proximal algorithm  



 At each 𝑘, the (feasible) tentative solution is computed as follows  

𝑥𝑘+1 = argmin
𝑥∈𝑋

𝑓 𝑥 +
1

2𝑐𝑘
𝑥 − 𝑥𝑘

2  

 if 𝑋 = 𝑅𝑛 a necessary and sufficient condition that 𝑥𝑘+1 has to 
satisfy is  

 0 ∈ 𝜕ℎ 𝑥𝑘+1   where ℎ 𝑥 = 𝑓 𝑥 +
1

2𝑐𝑘
𝑥 − 𝑥𝑘

2  

if 𝑓 non differentiable  

 This entails that  
 𝑥𝑘−𝑥𝑘+1
𝑐𝑘

∈ 𝜕𝑓 𝑥𝑘+1  

  a specific subgradient is chosen when performing a sort of  
subgradient step  

  

Proximal algorithm  



Proximal algorithm  

Role of the parameter 𝑐𝑘 

Large values (on the left) cause a faster progress  

towards the optimum than smller values (on the right) 



 
minimize 𝑓 𝑥
    subject to 𝑥 ∈ 𝑋

 

 

𝑓: 𝑅𝑛 → 𝑅 is convex function over 𝑋 

𝑋 is a non-empty closed convex set of  𝑅𝑛 

 

 

Constrained optimization 



 

𝑥𝑘+1 = argmin
𝑥∈𝑋

𝑓 𝑥 +
1

2𝑐𝑘
𝑥 − 𝑥𝑘

2  

 

 Proposition [convergence for a diminishing stepsize] 

 Let 𝑥𝑘  be a sequence generated by the proximal algorithm with 
𝑐𝑘 asymptotically vanishing satisfying  𝑐𝑘

∞
𝑘=0 = ∞ and 

 𝑐𝑘
2∞

𝑘=0 < ∞. 

 Then,  𝑥𝑘  converges to a global minimum.  

 

 Note: this results holds for 𝑓 differentiable or not differentiable  

  

Proximal minimization 
 



Proof. 

Instrumental Lemma 
𝑦∗ = argmin

𝑦∈𝑌
𝐽1 𝑦 + 𝐽2(𝑦)  

𝐽1 and 𝐽2 convex, 𝐽2 continuously differentiable. Then,  
𝑦∗ = argmin

𝑦∈𝑌
𝐽1 𝑦 + ∇𝐽2 𝑦

∗ ′𝑦  

 

Proximal algorithm  
 



Proof. 

Instrumental Lemma 
𝑦∗ = argmin

𝑦∈𝑌
𝐽1 𝑦 + 𝐽2(𝑦)  

𝐽1 and 𝐽2 convex, 𝐽2 continuously differentiable. Then,  
𝑦∗ = argmin

𝑦∈𝑌
𝐽1 𝑦 + ∇𝐽2 𝑦

∗ ′𝑦  

 

If we apply this lemma to  

𝑥𝑘+1 = argmin
𝑥∈𝑋

𝑓 𝑥 +
1

2𝑐𝑘
𝑥 − 𝑥𝑘

2  

we get 

𝑥𝑘+1 = argmin
𝑥∈𝑋

𝑓 𝑥 +
1

𝑐𝑘
𝑥𝑘+1 − 𝑥𝑘

′𝑥  

Proximal algorithm  
 



Proof. 

𝑥𝑘+1 = argmin
𝑥∈𝑋

𝑓 𝑥 +
1

𝑐𝑘
𝑥𝑘+1 − 𝑥𝑘

′𝑥  

Then,  

𝑓 𝑥𝑘+1 +
1

𝑐𝑘
𝑥𝑘+1 − 𝑥𝑘

′𝑥𝑘+1 ≤ 𝑓 𝑥 +
1

𝑐𝑘
𝑥𝑘+1 − 𝑥𝑘

′𝑥, 𝑥 ∈ 𝑋 

By re-ordering terms and multiplying by 2, we get 
2 𝑥𝑘+1 − 𝑥𝑘

′(𝑥𝑘+1−𝑥) ≤ 2𝑐𝑘(𝑓 𝑥 − 𝑓 𝑥𝑘+1 ) 

Proximal algorithm  
 



Proof. 

𝑥𝑘+1 = argmin
𝑥∈𝑋

𝑓 𝑥 +
1

𝑐𝑘
𝑥𝑘+1 − 𝑥𝑘

′𝑥  

Then,  

𝑓 𝑥𝑘+1 +
1

𝑐𝑘
𝑥𝑘+1 − 𝑥𝑘

′𝑥𝑘+1 ≤ 𝑓 𝑥 +
1

𝑐𝑘
𝑥𝑘+1 − 𝑥𝑘

′𝑥, 𝑥 ∈ 𝑋 

By re-ordering terms and multiplying by 2, we get 
2 𝑥𝑘+1 − 𝑥𝑘

′(𝑥𝑘+1−𝑥) ≤ 2𝑐𝑘(𝑓 𝑥 − 𝑓 𝑥𝑘+1 ), 𝑥 ∈ 𝑋 

Since 

 2 𝑥𝑘+1 − 𝑥𝑘
′(𝑥𝑘+1−𝑥) = 𝑥𝑘+1 − 𝑥

2 + 𝑥𝑘+1 − 𝑥𝑘
2 − 𝑥𝑘 − 𝑥

2 

we have 

𝑥𝑘+1 − 𝑥
2 ≤ 𝑥𝑘 − 𝑥

2 − 𝑥𝑘+1 − 𝑥𝑘
2+ 2𝑐𝑘(𝑓 𝑥 − 𝑓 𝑥𝑘+1 ) 

Proximal algorithm  
 



Proof.  

Assume for simplicity that the global minimum of 𝑓  is unique and  

denote it by 𝑥∗.  

𝑥𝑘+1 − 𝑥
∗ 2 ≤ 𝑥𝑘 − 𝑥

∗ 2 − 𝑥𝑘+1 − 𝑥𝑘
2+ 2𝑐𝑘(𝑓 𝑥

∗ − 𝑓 𝑥𝑘+1 ) 

 

Then, 𝑥𝑘 − 𝑥
∗  converges (and is bounded) 

 

By neglecting − 𝑥𝑘+1 − 𝑥𝑘
2  and computing  ∞𝑘=0  of both sides, we  

obtain 

 

2 𝑐𝑘(𝑓 𝑥𝑘+1 − 𝑓 𝑥
∗ )

∞

𝑘=0

≤ 𝑥0 − 𝑥
∗ 2 − 𝑥∞ − 𝑥

∗ 2 < ∞ 

Proximal algorithm  
 



Proof.  

Since  𝑐𝑘
∞
𝑘=0 = ∞, then, liminf

𝑘→∞
𝑓 𝑥𝑘 − 𝑓 𝑥

∗ = 0.  

This means 

𝑓 𝑥𝑘 → 𝑓 𝑥
∗  across a subsequence and, due to the continuity of 𝑓,  

𝑥𝑘  → 𝑥
∗ along that subsequence.  

Since 𝑥𝑘 − 𝑥
∗  converges, 𝑥𝑘  → 𝑥

∗ along every subsequence.  

Proximal algorithm  
 



Math Tools: Basics on constrained 

and convex optimization 

Maria Prandini 


