

Basics on constrained and convex optimization – Part 2

Maria Prandini

- Constrained convex optimization: non differentiable setting
- Proximal algorithm

Main references:

- D. Bertsekas. Nonlinear programming. Athena scientific, 1999
- D. Bertsekas. Convex Optimization Theory. Athena Scientific, 2009 Remark: pictures are taken from the reference books

minimize f(x)subject to $x \in X$

 $f: \mathbb{R}^n \to \mathbb{R}$ is a continuously differentiable convex function over XX is a non-empty closed convex subset of \mathbb{R}^n

What about non differentiable functions?

g is a subgradient of f (not necessarily convex) at x if $f(y) \ge f(x) + g'(y - x), \forall y \in \mathbb{R}^n$

g is a subgradient of f (not necessarily convex) at x if $f(y) \ge f(x) + g'(y - x), \forall y \in \mathbb{R}^n$

- subgradient provides an affine global underestimator of f

g is a subgradient of f (not necessarily convex) at x if $f(y) \ge f(x) + g'(y - x), \forall y \in \mathbb{R}^n$

- subgradient provides an affine global under-estimator of f
- if *f* convex, then, there is at least one subgradient at every interior point of *X*
- If f is convex and differentiable, $\nabla f(x)$ is a subgradient of f at x

g is a subgradient of f (not necessarily convex) at x if $f(y) \ge f(x) + g'(y - x), \forall y \in \mathbb{R}^n$

- subgradient provides an affine global under-estimator of f
- if *f* convex, then, there is at least one subgradient at every interior point of *X*
- If f is convex and differentiable, $\nabla f(x)$ is a subgradient of f at x This follows from the basic inequality for convex differentiable f $f(y) \ge f(x) + \nabla f(x)'(y-x), \forall y \in \mathbb{R}^n, \forall x \in \mathbb{R}^n$

 g_2 , g_3 are subgradients at x_2 ; g_1 is a subgradient at x_1

 $f = \max\{f_1, f_2\}$, with f_1 , f_2 convex and differentiable

- $f_1(x_0) > f_2(x_0)$: unique subgradient $g = \nabla f_1(x_0)$
- $f_2(x_0) > f_1(x_0)$: unique subgradient $g = \nabla f_2(x_0)$
- $f_1(x_0) = f_2(x_0)$: subgradients form a line segment $[\nabla f_1(x_0), \nabla f_2(x_0)]$

The set of all subgradient of f at x at is called the subdifferential of f at x. It is denoted as $\partial f(x)$

$$f(y) \ge f(x) + g'(y - x), \forall y \in \mathbb{R}^n$$

- ∂f(x) is a closed convex set (intersection of closed half spaces, one for each y)
- $\partial f(x)$ nonempty if f convex
- $\partial f(x) = \{\nabla f(x)\}$ if f is differentiable at x
- if $\partial f(x) = \{g\}$, then f is differentiable at x and $g = \nabla f(x)$

(i) $\nabla f(x^*) = 0$ [if *f* differentiable]

(i) $\nabla f(x^*) = 0$ [if f differentiable]

(ii) $0 \in \partial f(x^*)$ [if f non differentiable]

(i) $\nabla f(x^*) = 0$ [if f differentiable]

(ii) $0 \in \partial f(x^*)$ [if f non differentiable]

Proof [(ii)]

(i) $\nabla f(x^*) = 0$ [if f differentiable] (ii) $0 \in \partial f(x^*)$ [if f non differentiable]

Proof [(ii)]

by definition of subgradient g at x^* with g = 0, we get

 $f(y) \ge f(x^*) + 0'(y - x^*), \forall y \in X \implies x^*$ global minimum viceversa if x^* is a global minimum then

$$f(y) \ge f(x^*) = f(x^*) + 0'(y - x^*), \forall y \in X \Longrightarrow 0 \in \partial f(x^*)$$

(i) $\nabla f(x^*)'(y - x^*) \ge 0, \forall y \in X$ [if f differentiable]

(i) $\nabla f(x^*)'(y - x^*) \ge 0, \forall y \in X$ [if f differentiable]

(ii) there exists a subgradient $g \in \partial f(x^*)$ such that $g'(y - x^*) \ge 0, \forall y \in X$

[if *f* non differentiable]

(i) $\nabla f(x^*)'(y - x^*) \ge 0, \forall y \in X$ [if f differentiable]

(ii) there exists a subgradient $g \in \partial f(x^*)$ such that $g'(y - x^*) \ge 0, \forall y \in X$

[if f non differentiable] Proof [(ii) only sufficient part] by definition of subgradient g at x^* , we get

$$f(y) \ge f(x^*) + g'(y - x^*) \ge f(x^*), \forall y \in X$$

 $\rightarrow x^*$ global minimum

minimize f(x)subject to $x \in X$

 $f: \mathbb{R}^n \to \mathbb{R}$ is a **non differentiable convex function** over XX is a non-empty closed convex subset of \mathbb{R}^n

Subgradient method:

$$x_{k+1} = P_X[x_k - c_k g_k]$$

where $g_k \in \partial f(x_k)$

Proposition [convergence for a diminishing stepsize]

Let $\{x_k\}$ be a sequence generated by the subgradient projection method with c_k asymptotically vanishing satisfying $\sum_{k=0}^{\infty} c_k = \infty$ and $\sum_{k=0}^{\infty} c_k^2 < \infty$.

If function f is Lipschitz continuous, then, $\{x_k\}$ converges to a global minimum.

Note: this results holds also for f differentiable

Assume for simplicity that the global minimum is unique and denote it by x^* .

$$||x_{k+1} - x^*|| = ||P_X[x_k - c_k g_k] - x^*|| = ||P_X[x_k - c_k g_k] - P_X[x^*]||$$

$$\leq ||[x_k - c_k g_k - x^*||$$

since the projection operator is non-expansive.

Assume for simplicity that the global minimum is unique and denote it by x^* .

$$||x_{k+1} - x^*|| = ||P_X[x_k - c_k g_k] - x^*|| = ||P_X[x_k - c_k g_k] - P_X[x^*]||$$

$$\leq ||[x_k - c_k g_k - x^*||$$

since the projection operator is non-expansive.

We then have

$$\begin{aligned} \|x_{k+1} - x^*\|^2 &\leq \|[x_k - c_k g_k - x^*\|^2 \\ &= \|x_k - x^*\|^2 - 2c_k g'_k (x_k - x^*) + c_k^2 \|g_k\|^2 \end{aligned}$$

$$\|x_{k+1} - x^*\|^2 \le \|x_k - x^*\|^2 - 2c_k g'_k (x_k - x^*) + c_k^2 \|g_k\|^2$$

Given that f is Lipschitz continuous, there exists L>0 such that $|f(x_k) - f(y)| \le L ||x_k - y||, \forall y \in \mathbb{R}^n$

By the definition of subgradient, we have that $f(y) \ge f(x_k) + g_k'(y - x_k), \forall y \in \mathbb{R}^n$

We then get

 $g_k'(y - x_k) \le |f(y) - f(x_k)| \le L ||x_k - y||, \forall y \in \mathbb{R}^n$ which leads to $||g_k|| \le L$

$$\|x_{k+1} - x^*\|^2 \le \|x_k - x^*\|^2 - 2c_k g'_k (x_k - x^*) + c_k^2 L^2$$

Since

$$g_k'(x^* - x_k) \le f(x^*) - f(x_k)$$

then

$$\|x_{k+1} - x^*\|^2 \le \|x_k - x^*\|^2 + 2c_k (f(x^*) - f(x_k)) + c_k^2 L^2$$

From this inequality we get that $\|x_k - x^*\|$ converges since
 $f(x^*) - f(x_k) < 0.$
Also, by computing $\sum_{k=0}^{\infty}$ of both sides, we get:

$$2\sum_{k=0}^{\infty} c_k (f(x_k) - f(x^*)) \le ||x_0 - x^*||^2 - ||x_\infty - x^*||^2 + L^2 \sum_{k=0}^{\infty} c_k^2$$

$$2\sum_{k=0}^{\infty} c_k (f(x_k) - f(x^*)) \le ||x_0 - x^*||^2 - ||x_\infty - x^*||^2 + L^2 \sum_{k=0}^{\infty} c_k^2$$

entails that $\sum_{k=0}^{\infty} c_k (f(x_k) - f(x^*))$ is bounded.
Since $\sum_{k=0}^{\infty} c_k = \infty$, then, $\liminf_{k \to \infty} (f(x_k) - f(x^*)) = 0$.

This means

 $f(x_k) \rightarrow f(x^*)$ across a subsequence and, due to the continuity of f, $x_k \rightarrow x^*$ along that subsequence. Since $||x_k - x^*||$ converges, $x_k \rightarrow x^*$ along every subsequence.

minimize f(x)subject to $x \in X$

 $f: \mathbb{R}^n \to \mathbb{R}$ is convex function over XX is a non-empty closed convex set of \mathbb{R}^n

$$x_{k+1} = \underset{x \in X}{\operatorname{argmin}} \left\{ f(x) + \frac{1}{2c_k} \|x - x_k\|^2 \right\}$$

where c_k is a positive scalar parameter weighting the quadratic regularization term that is added to f(x)

$$x_{k+1} = \underset{x \in X}{\operatorname{argmin}} \left\{ f(x) + \frac{1}{2c_k} \|x - x_k\|^2 \right\}$$

where c_k is a positive scalar parameter weighting the quadratic regularization term that is added to f(x)

The regularization term makes the function to be minimized strictly convex and coercive so that it has a unique global minimum.

$$x_{k+1} = \underset{x \in X}{\operatorname{argmin}} \left\{ f(x) + \frac{1}{2c_k} \|x - x_k\|^2 \right\}$$

where c_k is a positive scalar parameter weighting the quadratic regularization term that is added to f(x)

Cost decreases:

$$f(x_{k+1}) + \frac{1}{2c_k} \|x_{k+1} - x_k\|^2 \le f(x_k) + \frac{1}{2c_k} \|x_k - x_k\|^2 = f(x_k)$$

$$x_{k+1} = \underset{x \in X}{\operatorname{argmin}} \left\{ f(x) + \frac{1}{2c_k} \|x - x_k\|^2 \right\}$$

if $X = R^n$ a necessary and sufficient condition that x_{k+1} has to satisfy is

$$abla h(x_{k+1}) = 0$$
 where $h(x) = f(x) + \frac{1}{2c_k} ||x - x_k||^2$
if f differentiable

$$x_{k+1} = \underset{x \in X}{\operatorname{argmin}} \left\{ f(x) + \frac{1}{2c_k} \|x - x_k\|^2 \right\}$$

if $X = R^n$ a necessary and sufficient condition that x_{k+1} has to satisfy is

$$\nabla h(x_{k+1}) = 0$$
 where $h(x) = f(x) + \frac{1}{2c_k} ||x - x_k||^2$
if f differentiable

This entails that

$$\frac{x_k - x_{k+1}}{c_k} = \nabla f(x_{k+1})$$

Proximal algorithm

$$x_{k+1} = \underset{x \in X}{\operatorname{argmin}} \left\{ f(x) + \frac{1}{2c_k} \|x - x_k\|^2 \right\}$$

if $X = R^n$ a necessary and sufficient condition that x_{k+1} has to satisfy is

$$abla h(x_{k+1}) = 0$$
 where $h(x) = f(x) + \frac{1}{2c_k} ||x - x_k||^2$
if f differentiable

This entails that

$$\frac{x_k - x_{k+1}}{c_k} = \nabla f(x_{k+1}) \leftrightarrow x_{k+1} = x_k - c_k \nabla f(x_{k+1})$$

nearly a steepest gradient step

$$x_{k+1} = \underset{x \in X}{\operatorname{argmin}} \left\{ f(x) + \frac{1}{2c_k} \|x - x_k\|^2 \right\}$$

if $X = R^n$ a necessary and sufficient condition that x_{k+1} has to satisfy is

$$0 \in \partial h(x_{k+1})$$
 where $h(x) = f(x) + \frac{1}{2c_k} ||x - x_k||^2$
if f non differentiable

$$x_{k+1} = \underset{x \in X}{\operatorname{argmin}} \left\{ f(x) + \frac{1}{2c_k} \|x - x_k\|^2 \right\}$$

if $X = R^n$ a necessary and sufficient condition that x_{k+1} has to satisfy is

$$0 \in \partial h(x_{k+1})$$
 where $h(x) = f(x) + \frac{1}{2c_k} ||x - x_k||^2$

if f non differentiable

This entails that

$$\frac{x_k - x_{k+1}}{c_k} \in \partial f(x_{k+1})$$

 \rightarrow a specific subgradient is chosen when performing a sort of subgradient step

Role of the parameter c_k

Large values (on the left) cause a faster progress towards the optimum than smller values (on the right)

minimize f(x)subject to $x \in X$

 $f: \mathbb{R}^n \to \mathbb{R}$ is convex function over XX is a non-empty closed convex set of \mathbb{R}^n

$$x_{k+1} = \underset{x \in X}{\operatorname{argmin}} \left\{ f(x) + \frac{1}{2c_k} \|x - x_k\|^2 \right\}$$

Proposition [convergence for a diminishing stepsize] Let $\{x_k\}$ be a sequence generated by the proximal algorithm with c_k asymptotically vanishing satisfying $\sum_{k=0}^{\infty} c_k = \infty$ and $\sum_{k=0}^{\infty} c_k^2 < \infty$. Then, $\{x_k\}$ converges to a global minimum.

Note: this results holds for *f* differentiable or not differentiable

 J_1 an

Instrumental Lemma

$$y^* = \underset{y \in Y}{\operatorname{argmin}} \{J_1(y) + J_2(y)\}$$

d J_2 convex, J_2 continuously differentiable. Then,

$$y^* = \underset{y \in Y}{\operatorname{argmin}} \{J_1(y) + \nabla J_2(y^*)'y\}$$

Instrumental Lemma

$$y^* = \underset{y \in Y}{\operatorname{argmin}} \{J_1(y) + J_2(y)\}$$

 J_1 and J_2 convex, J_2 continuously differentiable. Then, $y^* = \underset{y \in Y}{\operatorname{argmin}} \{J_1(y) + \nabla J_2(y^*)'y\}$

If we apply this lemma to

$$x_{k+1} = \underset{x \in X}{\operatorname{argmin}} \left\{ f(x) + \frac{1}{2c_k} \|x - x_k\|^2 \right\}$$

we get

$$x_{k+1} = \underset{x \in X}{\operatorname{argmin}} \left\{ f(x) + \frac{1}{c_k} (x_{k+1} - x_k)' x \right\}$$

$$x_{k+1} = \underset{x \in X}{\operatorname{argmin}} \left\{ f(x) + \frac{1}{c_k} (x_{k+1} - x_k)' x \right\}$$

Then,

$$f(x_{k+1}) + \frac{1}{c_k}(x_{k+1} - x_k)'x_{k+1} \le f(x) + \frac{1}{c_k}(x_{k+1} - x_k)'x, x \in X$$

By re-ordering terms and multiplying by 2, we get

 $2(x_{k+1} - x_k)'(x_{k+1} - x) \le 2c_k(f(x) - f(x_{k+1}))$

Proximal algorithm

Proof.

$$x_{k+1} = \underset{x \in X}{\operatorname{argmin}} \left\{ f(x) + \frac{1}{c_k} (x_{k+1} - x_k)' x \right\}$$

Then,

$$f(x_{k+1}) + \frac{1}{c_k}(x_{k+1} - x_k)'x_{k+1} \le f(x) + \frac{1}{c_k}(x_{k+1} - x_k)'x, x \in X$$

By re-ordering terms and multiplying by 2, we get

$$2(x_{k+1} - x_k)'(x_{k+1} - x) \le 2c_k(f(x) - f(x_{k+1})), x \in X$$

Since

$$2(x_{k+1} - x_k)'(x_{k+1} - x) = ||x_{k+1} - x||^2 + ||x_{k+1} - x_k||^2 - ||x_k - x||^2$$

we have

$$\|x_{k+1} - x\|^2 \le \|x_k - x\|^2 - \|x_{k+1} - x_k\|^2 + 2c_k(f(x) - f(x_{k+1}))$$

- Assume for simplicity that the global minimum of f is unique and denote it by x^* .
- $\|x_{k+1} x^*\|^2 \le \|x_k x^*\|^2 \|x_{k+1} x_k\|^2 + 2c_k(f(x^*) f(x_{k+1}))$
- Then, $||x_k x^*||$ converges (and is bounded)
- By neglecting $-||x_{k+1} x_k||^2$ and computing $\sum_{k=0}^{\infty}$ of both sides, we obtain

$$2\sum_{k=0}^{\infty} c_k(f(x_{k+1}) - f(x^*)) \le ||x_0 - x^*||^2 - ||x_\infty - x^*||^2 < \infty$$

Since
$$\sum_{k=0}^{\infty} c_k = \infty$$
, then, $\liminf_{k \to \infty} (f(x_k) - f(x^*)) = 0$.

This means

 $f(x_k) \rightarrow f(x^*)$ across a subsequence and, due to the continuity of f, $x_k \rightarrow x^*$ along that subsequence.

Since $||x_k - x^*||$ converges, $x_k \rightarrow x^*$ along every subsequence.

Math Tools: Basics on constrained and convex optimization

Maria Prandini