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| Outline

* Constrained convex optimization: non differentiable setting

* Proximal algorithm

Main references:

D. Bertsekas. Nonlinear programming. Athena scientific, 1999

D. Bertsekas. Convex Optimization Theory. Athena Scientific, 2009
Remark: pictures are taken from the reference books




| Convex optimization

minimize f(x)
subjecttox € X

f:R™ = R is a continuously differentiable convex function over X
X is a non-empty closed convex subset of R"

What about non differentiable functions?




| Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if

fO)=fx)+g9(y—x),Vy €R"
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| Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if

fO)=fx)+g9(y—x),Vy €R"

* subgradient provides an affine global under-estimator of f

* if f convex, then, there is at least one subgradient at every
interior point of X

* If f is convex and differentiable, Vf (x) is a subgradient of f at x
This follows from the basic inequality for convex differentiable f

fO) =fx)+Vf(x)' (y—x),Vy € R",Vx € R"




Subgradient: an example

f(x)

flz) + g1 (z — 1)
“ L (r2) + gy (v — x2)
f (x2) + Qg(ﬂ? — T3)

g2, g3 are subgradients at xs; g1 is a subgradient at a4




| Subgradient: an example

f = max{fi, fo}, with fi, fo convex and differentiable

fa(xg): unique subgradient g = V f(x0)

f1(xzq): unique subgradient g = V f3(xg)
o fi(xg) = fa(xg): subgradients form a line segment [V f1(xq), V fa(z0)]




| Subdifferential of a function

The set of all subgradient of f at x at is called the subdifferential
of f at x. Itis denoted as df (x)

fO)=fx)+g9(y—x),Vy €R"

= df(x)is a closed convex set (intersection of closed half spaces, one
for each y)

= Jdf(x) nonempty if f convex
= df (x) = {Vf(x)}if f is differentiable at x
= if df (x) = {g}, then f is differentiable at x and g = Vf (x)




Example

flz) = |z




Example

Of(z)

-

y flz) = |z




| Optimality conditions — unconstrained convex

Let X € R™ be a convex setand f: X = R convex.
Necessary and sufficient condition for x* to be a global
minimum:

(i) Vf(x*) = 0 [if f differentiable]
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| Optimality conditions — unconstrained convex

Let X € R™ be a convex setand f: X = R convex.

Necessary and sufficient condition for x* to be a global
minimum:

(i) Vf(x*) = 0 [if f differentiable]
(ii)) 0 € 9f (x™) [if f non differentiable]

Proof [(ii)]

by definition of subgradient g at x™ with g = 0, we get
fy)=f(x)+0(y—x*),Vy € X = x* global minimum
viceversa if x™ is a global minimum then
fz2fx")=fx)+0(y—x%),VvyeX=0€e0df(x")
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| Optimality conditions — constrained convex

Let X € R™ be a convex setand f: X = R convex.

Necessary and sufficient condition for x* to be a global
minimum:

N VF(x")'(y—x*) = 0,Vy € X [if f differentiable]

(ii) there exists a subgradient g € df (x™) such that
gy—x*)=0vyeX

[if f non differentiable]




| Optimality conditions — constrained convex

Let X € R™ be a convex setand f: X = R convex.

Necessary and sufficient condition for x* to be a global
minimum:

N VF(x")'(y—x*) = 0,Vy € X [if f differentiable]

(ii) there exists a subgradient g € df (x™) such that
gly—x")=0,vyeXx
[if f non differentiable]
Proof [(ii) only sufficient part]
by definition of subgradient g at x™, we get

fO)=fx)+gy—x)=f(x"),vyex
-2 x™ global minimum




| Convex optimization

minimize f(x)
subjecttox € X

f:R™ = R is a non differentiable convex function over X
X is a non-empty closed convex subset of R"




| Projected subgradient — constrained opt

Subgradient method:

Xi+1 = Px[xx—Cr9x]
where g, € 0f (xy)

Proposition [convergence for a diminishing stepsize]

Let {x;, } be a sequence generated by the subgradient projection
method with c;, asymptotically vanishing satisfying .-, ¢, = o
and Yo, cf < oo.

If function f is Lipschitz continuous, then, {x;} convergesto a
global minimum.

Note: this results holds also for f differentiable




| Projected subgradient — constrained opt

Proof.

Assume for simplicity that the global minimum is unique and
denote it by x™.

lxk+1 — X" = [Py [ —cregr] — x" || = [Py [xx—crgi] — Px[x7]ll
< [[[xxk—crgr — x~|l
since the projection operator is non-expansive.




| Projected subgradient — constrained opt

Proof.

Assume for simplicity that the global minimum is unique and
denote it by x™.

lxk+1 — X" = [Py [ —cregr] — x" || = [Py [xx—crgi] — Px[x7]ll
< [[[xxk—crgr — x~|l
since the projection operator is non-expansive.
We then have
Xk 41 = x*|I? < l[xx—crgr — x*|I?
= |lx — x*11% = 2c. 95 (o — x™) + cicll g I?




| Projected subgradient — constrained opt

Proof.

lotieer = 217 < Nlxge — %7117 = 20,95 O — x7) + cigll giell?

Given that f is Lipschitz continuous, there exists L>0 such that
|f (xx) — fFO)| < Lllx — yll, vy € R™
By the definition of subgradient, we have that
fQ) = flxx) + g1’ (v — xx), Vy € R™
We then get
9’ @ —x) < |f () — fx)| < Lllxg — yll, Vy € R™
which leads to ||gx|| < L




| Projected subgradient — constrained opt

Proof.

| +1 — X*”Z < |lxx — x*”z — chgllc(xk —x*) + CI%LZ

Since
i (" —xp) < f(x*) — )
then
o1 — x*)1% < I — x*||* + ch(f(X*) — f(xk)) + ciL?
From this inequality we get that ||x;, — x™|| converges since
fx*) — flx) <O0.

Also, by computing >.r, of both sides, we get:
232 o ce(FCa) = F(M) < llxg — %7112 = oo — X711 + 12 N2 2




| Projected subgradient — constrained opt

Proof.
238 0 ck(FOa) = F(x) < llxg = 2112 = oo — 27112 + L2 £ 2
entails that ). ;- Cx (f(xk) — f(x*)) is bounded.
Since Yo Ck = %, then, lilgr_l)ioglf(f(xk) — f(x*)) = 0.
This means
f(x;) = f(x™) across a subsequence and, due to the continuity of f,

X; — x* along that subsequence.
Since ||x;, — x™|| converges, x;, — x* along every subsequence.




| Constrained optimization

minimize f(x)
subjecttox € X

f:R™ = R is convex function over X
X is a non-empty closed convex set of R™




| Proximal algorithm

At each k, a (feasible) tentative solution is computed as follows
_ 1
Xk+1 = argmin {f(X) +—|lx - xkllz}
xeX 2Ck

where ¢ is a positive scalar parameter weighting the quadratic
regularization term that is added to f(x)




| Proximal algorithm

At each k, a (feasible) tentative solution is computed as follows

1
Xk+1 = argmin {f(x) + e l|lx — xkllz}
xeX Ck

where ¢ is a positive scalar parameter weighting the quadratic
regularization term that is added to f(x)

The regularization term makes the function to be minimized

strictly convex and coercive so that it has a unique global
minimum.




| Proximal algorithm

At each k, a (feasible) tentative solution is computed as follows

1
Xp+1 = argmin {f(x) + o lx — xkllz}
xXeEX Ck

where ¢ is a positive scalar parameter weighting the quadratic
regularization term that is added to f(x)

Cost decreases:

1 1
f(Xks+1) + E |xp+1 — xkllz < fxg) + a B xk||2 = f(xg)




| Proximal algorithm

At each k, the (feasible) tentative solution is computed as follows

1
Xk+1 = argmin {f(x) o llx — xkllz}
X€EX Ck

if X = R™ a necessary and sufficient condition that x5, has to
satisfy is

VA(xis1) = 0 where h(x) = £ () + 5~ lx = ]2

if f differentiable




| Proximal algorithm

At each k, the (feasible) tentative solution is computed as follows

1
Xk+1 = argmin {f(x) o llx — xkllz}
X€EX Ck

if X = R™ a necessary and sufficient condition that x5, has to

satisfy is

1
Vh(xy4+1) = 0 where h(x) = f(x) + 2r [l — x|I?
if f differentiable

This entails that

Xi,—X
K TV (Xeen)
Ck




Proximal algorithm

||
4 slope is the common
f(zp)} gradient of f(x) and
1 2
— o lx — xp |* at xp44
Yk «
that is
Xk — Xk+1
/ Ck
|
L ch &




| Proximal algorithm

At each k, the (feasible) tentative solution is computed as follows

1
Xk+1 = argmin {f(x) + e l|lx — xkllz}
xeX Ck

if X = R™ a necessary and sufficient condition that x5, has to

satisfy is
1
Vh(xy4+1) = 0 where h(x) = f(x) + en [l — xI?
if f differentiable
This entails that
X~ Xk+1 _
o = Vf(Xk+1) © Xp41 = X — Vf (Xpe11)

nearly a steepest gradient step




| Proximal algorithm

At each k, the (feasible) tentative solution is computed as follows

1
Xk+1 = argmin {f(x) o l|lx — xkllz}
xeX Ck

if X = R™ a necessary and sufficient condition that x5, has to
satisfy is

1
0 € 0h(x,41) Where h(x) = f(x) + e lx — xx]|2
if f non differentiable




| Proximal algorithm

At each k, the (feasible) tentative solution is computed as follows

1
Xk+1 = argmin {f(x) + e l|lx — xkllz}
xeX Ck

if X = R™ a necessary and sufficient condition that x5, has to
satisfy is

0 € 0h(xy4+1) Where h(x) = f(x) + i lx — xp||?

if f non differentiable

This entails that
Xk—x

€ Of (i)
Ck

— a specific subgradient is chosen when performing a sort of
subgradient step




| Proximal algorithm

Role of the parameter ¢,
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Large values (on the left) cause a faster progress
towards the optimum than smller values (on the right)




| Constrained optimization

minimize f(x)
subjecttox € X

f:R™ = R is convex function over X
X is a non-empty closed convex set of R™




| Proximal minimization
||

1
Xk+1 = argmin {f(X) +—llx - xkllz}

XEX 2Ck

Proposition [convergence for a diminishing stepsize]

Let {x; } be a sequence generated by the proximal algorithm with
c; asymptotically vanishing satisfying ).y, ¢ = 0 and
Y o Ch < oo,

Then, {x;} converges to a global minimum.

Note: this results holds for f differentiable or not differentiable




| Proximal algorithm

Proof.

Instrumental Lemma

y* = argmin{/; (y) + ,(¥)}
yeY

J1 and J, convex, J, continuously differentiable. Then,

y' = argn;in{ll ) + V(") 'y}
YE




| Proximal algorithm

Proof.

Instrumental Lemma

y* = argmin{/; (y) + J,(¥)}
yeY

J1 and J, convex, J, continuously differentiable. Then,

y' = argn;in{h () + VL") 'y}
YE

If we apply this lemma to

_ 1

s = argmin {6+ 5l = P
XEX Ck

we get

1
Xg+1 = argmin {f(x) +— (Xp41 — xk)’x}
x€X Ck




| Proximal algorithm

Proof.
. 1 !/
X41 = argming f(x) + — (o1 — 2)"x
X€EX Ck

Then,

1

f(xesq) + P (1 — X)) X1 < f(x) + P (X1 — ) %, x € X
k k

By re-ordering terms and multiplying by 2, we get
2(Xp41 — X)) (Xgp1—x) < 2 (f () — f(xg41))




| Proximal algorithm

Proof.
. 1 !/
X1 = argmind f(x) + — QOegqq — x5)'x
X€EX Ck
Then,
1 ! 1 !
fOeg1) +— Ooea1 — 2) Xpeyr < f0) + — O —x) X, x €X

Ck Ck
By re-ordering terms and multiplying by 2, we get
241 — x1)" Oegr—x) < 20 (f () — fxgs1)), x €X
Since
241 — X)) (Kpp1=2%) = X1 — xl1% + 1241 — 2% = llxge — x11?
we have
%41 — 1% < lloxge = xN1% =lxrs1 = 201+ 20 (f () = f (ks1))




| Proximal algorithm

Proof.

Assume for simplicity that the global minimum of f is unique and

denote it by x™.

o1 = 2x7N1% < Hloege = 27112 =llotgess — 2 ll*+ 26 (f () = f(ox41))

Then, ||x;, — x*|| converges (and is bounded)

By neglecting —||x;4+1 — x|l* and computing Yrr,  of both sides, we
obtain

23 6(f (ern) = F) < llo = 27112 = ey = x°II7 < o0
k=0




| Proximal algorithm

Proof.
Since Yo Ck = o0, then, ligninf(f(xk) —f(x*)) =0.

This means

f(x;) = f(x™) across a subsequence and, due to the continuity of f,
X; — x* along that subsequence.

Since ||x;, — x™|| converges, x;, — x* along every subsequence.
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