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Notation: Optimization program

A more common problem format:

min
x∈X

f0(x)

subject to: fi (x) ≤ 0 i = 1, . . . ,m
hi (x) = 0 i = 1, . . . , p

Objective function f0 : X → R
Domain X ⊆ Rn of the objective function, from which the decision
variable x := (x1; x2; . . . ; xn) must be chosen.

Inequality constraint functions fi : Rn → R, for i = 1, . . . ,m

Equality constraint functions hi : Rn → R, for i = 1, . . . , p

⇒ Maximization fit the framework with a change of sign.
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Notation: Convex optimization program

Standard form optimization problem:

min
x∈X

f0(x)

subject to: fi (x) ≤ 0 i = 1, . . . ,m
hi (x) = 0 i = 1, . . . , p

Primal decision variables x

For convex programs:

X , f0, fi ’s convex, and hi (x) = a>i x all affine

local = global optimum
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Optimization programs and duality

Consider the following optimization program (no convexity assumption yet)

min
x∈X

f0(x)

subject to: fi (x) ≤ 0 i = 1, . . . ,m
hi (x) = 0 i = 1, . . . , p

Assume we are interested in the optimal value p∗ of (SDP)

Can we construct a lower bound for p∗, i.e. d∗ ≤ p∗, by solving
another problem?

This problem, called dual, might sometimes be easier to solve

To do this we first need some machinery – Duality Theory
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The Lagrangian function

Recall our standard form (primal) optimization problem:

(P) :

min
x∈X

f0(x)

subject to: fi (x) ≤ 0 i = 1 . . .m
hi (x) = 0 i = 1 . . . p

with (primal) decision variable x , domain X and optimal value p∗.

Lagrangian Function: L : X × Rm × Rp → R

L(x , λ, ν) = f0(x) +
m∑
i=1

λi fi (x) +

p∑
i=1

νihi (x)

λi : inequality Lagrange multiplier for fi (x) ≤ 0.

νi : equality Lagrange multiplier for hi (x) = 0.

Lagrangian: weighted sum of the objective and constraint functions.
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Lagrange dual function

The dual function g : Rm × Rp is

g(λ, ν) = inf
x∈X

L(x , λ, ν)

= inf
x∈X

[
f0(x) +

m∑
i=1

λi fi (x) +

p∑
i=1

νihi (x)

]

The dual function g(λ, ν) is always a concave function.

g(λ, ν) is the pointwise infimum of affine functions
Do you recall pointwise maximum?

g(�)g(�)

�
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Lagrange dual function

The dual function g : Rm × Rp is

g(λ, ν) = inf
x∈X

L(x , λ, ν)

= inf
x∈X

[
f0(x) +

m∑
i=1

λi fi (x) +

p∑
i=1

νihi (x)

]

The dual function generates lower bounds for the primal optimal value,
i.e. g(λ, ν) ≤ p∗ for λ ≥ 0:
Proof:
For any primal feasible solution x̄ :

∑m
i=1 λi fi (x̄) +

∑p
i=1 νihi (x̄) ≤ 0

g(λ, ν) = inf
x∈X

L(x , λ, ν) ≤ L(x̄ , λ, ν) ≤ f0(x̄) for all x̄

g(λ, ν) ≤ inf
x∈X

f0(x) ≤ p∗

g(λ, ν) might be −∞; Non-trivial if dom g := {λ, ν | g(λ, ν) > −∞}
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The dual problem

Every ν ∈ Rp, λ ≥ 0 produces a lower bound for p∗ using the dual
function.
Which is the best?

(D) :
max
λ,ν

g(λ, ν)

subject to: λ ≥ 0

Problem (D) is convex, even if (P) is not.

Problem (D) has optimal value d∗ ≤ p∗.

The point (λ, ν) is dual feasible if λ ≥ 0 and (λ, ν) ∈ dom g .

Often impose the constraint (λ, ν) ∈ dom g explicitly in (D).
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Example : Dual of LPs

(P) :

min
x∈Rn

c>x

subject to: Ax = b
Cx ≤ d

The dual function is

g(λ, ν) = min
x∈Rn

[
c>x + ν>(Ax − b) + λ>(Cx − d)

]
= min

x∈Rn

[
(A>ν + C>λ+ c)>x − b>ν − d>λ

]

=

{
−b>ν − d>λ if A>ν + C>λ+ c = 0

−∞ otherwise
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Example : Dual of LPs – (cont’d)

(P) :

min
x∈Rn

c>x

subject to: Ax = b
Cx ≤ d

The dual problem is

(D) :

max
λ,ν

−b>ν − d>λ

subject to: A>ν + C>λ+ c = 0
λ ≥ 0

Lower bound property:
−b>ν − d>λ ≤ p∗ whenever λ ≥ 0.

The dual of a linear program is also a linear program.
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Example : Dual of a mixed-integer linear program (MILP)

(P) :

min
x∈X

c>x

subject to: Ax ≤ b
X = {−1, 1}n

The dual function is

g(λ) = min
xi∈{−1,1}

[
c>x + λ>(Ax − b)

]
= −‖A>λ+ c‖1 − b>λ

The dual problem is

(D) :
max
λ

−‖A>λ+ c‖1 − b>λ

subject to: λ ≥ 0

The dual of a mixed-integer linear program is a linear program!
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Weak and strong duality

Weak Duality

It is always true that d∗ ≤ p∗.

Sometimes the dual is much easier to solve than the primal (or
vice-versa).

Example: The dual of an MILP (difficult to solve) is a standard LP
(easy to solve).

Strong Duality

It is sometimes true that d∗ = p∗.

Strong duality usually holds for convex problems.

Strong duality usually does not hold for non-convex problems.

Can impose conditions on convex problems to guarantee that d∗ = p∗.
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Strong duality for convex problems

An optimization problem with f0 and all fi convex:

(P) :

min f0(x)

subject to: fi (x) ≤ 0 i = 1 . . .m
Ax = b A ∈ Rp×n

Slater Condition

If there is at least one strictly feasible point, i.e.{
x
∣∣∣ Ax = b, fi (x) < 0, ∀i ∈ {1, . . . ,m}

}
6= ∅

Then p∗ = d∗.

Stronger version: Only the nonlinear functions fi (x) must be strictly
satisfiable (non-empty interior).

Other constraint qualification conditions exist.
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Duality – A geometric view

Assume one inequality constraint only:

G := {(u, t) | t = f0(x), u = f1(x), x ∈ X }

Primal problem:

p∗ = min {t | (u, t) ∈ G, u ≤ 0}

Dual function:

g(λ) = min
(u,t)∈G

(t + λu)

Dual problem:

d∗ = max
λ≥0

g(λ)

p⇤

d⇤

g(�) = t + u�

u

t

The quantity p∗ − d∗ is the duality gap.
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Primal and dual solution properties

Assume that strong duality holds, with optimal solution x∗ and (λ∗, ν∗).

From strong duality, d∗ = p∗ ⇒ g(λ∗, ν∗) = f0(x∗).

From the definition of the dual function:

f0(x∗) = g(λ∗, ν∗) = min
x

{
f0(x) +

m∑
i=1

λ∗i fi (x) +

p∑
i=1

ν∗i hi (x)

}

≤ f0(x∗) +
m∑
i=1

λ∗i fi (x
∗) +

p∑
i=1

ν∗i hi (x
∗) ≤ f0(x∗)

[weak duality]

=⇒ f0(x∗) = g(λ∗, ν∗) = f0(x∗) +
m∑
i=1

λ∗i fi (x
∗) +

p∑
i=1

ν∗i hi (x
∗)

=⇒
λ∗i = 0 for every fi (x

∗) < 0.

fi (x
∗) = 0 for every λ∗i > 0.

}
Complementary slackness
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Karush-Kuhn-Tucker (KKT) optimality conditions

Assume that all fi and hi are differentiable (no convexity assumption yet).
Necessary conditions for optimality:

1) Primal Feasibility:

fi (x
∗) ≤ 0 i = 1, . . . ,m

hi (x
∗) = 0 i = 1 . . . , p

2) Dual Feasibility:
λ∗ ≥ 0

3) Complementary Slackness:

λ∗i fi (x
∗) = 0 i = 1, . . . ,m

4) Stationarity:

∇xL(x∗, λ∗, ν∗) = ∇f0(x∗) +
m∑
i=1

λ∗i∇fi (x∗) +

p∑
i=1

ν∗i ∇hi (x∗) = 0
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KKT optimality conditions – Convex Programs

Assume that all fi and hi are differentiable and problem is convex:

1) If (x∗, λ∗, ν∗) satisfy the KKT conditions, then

they are primal and dual optimal

they result in zero duality gap, i.e. p∗ = d∗

2) If in addition Slater’s condition holds, then

duality gap is zero and the dual optimum is attained (existence of
(λ∗, ν∗) is guaranteed)

x∗ is optimal if and only if there exist (λ∗, ν∗) that, together with x∗,
satisfy the KKT conditions
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Example : KKT optimality conditions for QPs

Consider a (convex) quadratic program with Q � 0:

(P) :

min
x∈Rn

1
2x
>Qx + c>x

subject to: Ax = b
x ≥ 0

The Lagrangian is L(x , λ, ν) = 1
2x
>Qx + c>x + ν>(Ax − b)− λ>x .

The KKT conditions are:

∇xL(x , λ, ν) = Qx + A>ν − λ+ c = 0 [stationarity]

Ax = b [primal feasibility]

x ≥ 0 [primal feasibility]

λ ≥ 0 [dual feasibility]

xiλi = 0, i = 1 . . . n [complementarity]
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