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Notation: Optimization program

A more common problem format:
in f
my el
subject to: fi(x) <0 i=1,....m
hi(x)=0 i=1,...,p

e Objective function i : X — R

@ Domain X C R” of the objective function, from which the decision

variable x := (xy;x2; ...; xn) must be chosen.
@ Inequality constraint functions f; : R" - R, for i =1,..., m
o Equality constraint functions h; : R" - R, fori=1,...,p

= Maximization fit the framework with a change of sign.
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Notation: Convex optimization program

@ Standard form optimization problem:

in £
SN
subject to: fi(x) <0 i=1,...,m
hi(x) = i=1,...,p

o Primal decision variables x
e For convex programs:

o X, fo, fi's convex, and hi(x) = a x all affine

@ local = global optimum
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Optimization programs and duality

Consider the following optimization program (no convexity assumption yet)

in £

iy 6k)
subject to: fi(x) <0 i=1,...,m
hi(X) = = 17 » P

@ Assume we are interested in the optimal value p* of (SDP)

@ Can we construct a lower bound for p*, i.e. d* < p*, by solving
another problem?

@ This problem, called dual, might sometimes be easier to solve

To do this we first need some machinery — Duality Theory
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The Lagrangian function
Recall our standard form (primal) optimization problem:

my el

subject to: fi(x) <0 i=1...m
hi(x) =0 i=1...p

(P):

*

with (primal) decision variable x, domain X and optimal value p*.

Lagrangian Function: L : X x R™ x R?P - R

L0, A v) = f(x) + D Nifi(x) + > vihi(x)
i=1

i=1

@ )\; : inequality Lagrange multiplier for f;(x) < 0.
e v; : equality Lagrange multiplier for h;(x) = 0.
@ Lagrangian: weighted sum of the objective and constraint functions.
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Lagrange dual function
The dual function g : R” x RP is

g(\v) = inf L(x, \,v)

m P
= inf | fo(x) + Zl Aifi(x) + Zl vihi(x)
The dual function g(A,v) is always a concave function.

e g(A,v) is the pointwise infimum of affine functions
Do you recall pointwise maximum?

9(\)

N
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Lagrange dual function
The dual function g : R™ x R” is

g(\,v) = inf L(x,A,v)

m p
= inf |fc Aifi ihi
EALCEDSRCED U

The dual function generates lower bounds for the primal optimal value,
ie. g(A\,v) < p* for A > 0:
Proof:

For any primal feasible solution x: > | X\;ifi(X) + >_F_; vihi(x) <0
g\ v) = infv L(x,\,v) < L(x, A\, v) < fo(x) for all x
X€
< j < p*
g(A,v) < inf fo(x) < p

e g(A,v) might be —oo; Non-trivial if domg := {\,v | g(A\,v) > —c0}
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The dual problem

Every v € RP, A > 0 produces a lower bound for p* using the dual
function.
Which is the best?

max g(\,v)
(D) o
subject to: A >0

Problem (D) is convex, even if (P) is not.

Problem (D) has optimal value d* < p*.

The point (), v) is dual feasible if A > 0 and (\,v) € domg.

e Often impose the constraint (A, v) € dom g explicitly in (D).
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Example : Dual of LPs

min ¢! x

x€eR"

subject to: Ax=0b
Cx<d

(P):

The dual function is

g\ v)= m]ilg |:CTX + v (Ax — b) + AT (Cx — d)}
xeR"?

— min [(ATV +CTA+ ) x—bTv— dTA}
x€eR"

—bTv—d"X fATV+CTA+c=0
—00 otherwise
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Example : Dual of LPs — (cont'd)

min ¢’ x
x€eR"
(P): subject to: Ax=0b
Cx<d

The dual problem is

max —b'v—d"\
AV

(D): subject to: ATv+ CTA+¢c=0
A>0

@ Lower bound property:
—b"v —d" A < p* whenever \ > 0.

@ The dual of a linear program is also a linear program.
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Example : Dual of a mixed-integer linear program (MILP)

min ¢! x
xeX
(P): subject to: Ax < b
X ={-1,1}"

The dual function is

N= min |c"x+AT(A —b}

g(}) LN (Ax —b)
= —|ATA+ ¢l —b"A

The dual problem is

max —|ATA +cll1 —b"A

(D) _
subject to: A >0

The dual of a mixed-integer linear program is a linear program!
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Weak and strong duality

Weak Duality
o It is always true that d* < p*.

@ Sometimes the dual is much easier to solve than the primal (or
vice-versa).

e Example: The dual of an MILP (difficult to solve) is a standard LP
(easy to solve).

Strong Duality
o It is sometimes true that d* = p*.

@ Strong duality usually holds for convex problems.

@ Strong duality usually does not hold for non-convex problems.

@ Can impose conditions on convex problems to guarantee that d* = p*.
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Strong duality for convex problems
An optimization problem with fy and all f; convex:

min  fo(x)

(P): subject to: fi(x) <0 i=1...m

Ax=b AeRP*"

Slater Condition

If there is at least one strictly feasible point, i.e.

{x ) Ax = b, fi(x) <0, Vi e {1,...,m}} 20
Then p* = d*.
@ Stronger version: Only the nonlinear functions f;(x) must be strictly
satisfiable (non-empty interior).
@ Other constraint qualification conditions exist.
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Duality — A geometric view

Assume one inequality constraint only:

G:={(u,t) | t="1(x), u=~hf(x), xe X}

Primal problem:
p*=min{t | (u,t)e€G, u<0}-—-_23

Dual function:

(u,t)eg
Dual problem:
d* = maxg(\
maxg(})
The quantity p* — d* is the duality gap.
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Primal and dual solution properties

Assume that strong duality holds, with optimal solution x* and (\*,v*).

e From strong duality, d* = p* = g(\*,v*) = fo(x¥).
@ From the definition of the dual function:
m p
fo(x*) = g(\*,v*) = mXin {fo(x) + Z Nifi(x) + Z V;‘h,-(x)}
i=1 i=1

m p

<R+ D NH) D vihi(x) < f(x")
i=1 i=1

[weak duality]

m P
= f(x") = g\, v") = H(x") + DN+ > vihi(x")
i=1 i=1
i =0 for every fi(x*) < 0.
Complementary slackness
fi(x*) = 0 for every \¥ > 0.
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Karush-Kuhn-Tucker (KKT) optimality conditions

Assume that all f; and h; are differentiable (no convexity assumption yet).
Necessary conditions for optimality:

@ Primal Feasibility:

@ Dual Feasibility:
A*>0

@ Complementary Slackness:

Aifi(x*)=0 i=1,....m
Q@ Stationarity:

V. L(X*, N, %) = Viy(x +Z)\*Vf +Zth
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KKT optimality conditions — Convex Programs

Assume that all f; and h; are differentiable and problem is convex:
@ If (x*, \*,v*) satisfy the KKT conditions, then
e they are primal and dual optimal

o they result in zero duality gap, i.e. p* = d*

@ If in addition Slater’s condition holds, then

o duality gap is zero and the dual optimum is attained (existence of
(\*,v*) is guaranteed)

o x* is optimal if and only if there exist (\*,v*) that, together with x*,
satisfy the KKT conditions
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Example : KKT optimality conditions for QPs

Consider a (convex) quadratic program with Q > 0:
min %XTQX +cTx
xER"

subject to: Ax=0b
x>0

(P):

The Lagrangian is L(x,\,v) = 3x T Qx +c'x+ v (Ax — b) — AT x.
The KKT conditions are:

Vil M) = Qx4+ AT —A4+c=0 [stationarity]
Ax =b [primal feasibility]
x>0 [primal feasibility]
A>0 [dual feasibility]

xiA\i =0, i=1...n [complementarity]
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