Introduction to duality theory

Kostas Margellos

University of Oxford

February 12, 2020

Politecnico di Milano

Introduction to duality theory

February 12, 2020 1 / 24

Convex Optimization & Duality Theory:

Boyd & Vandenberghe (2004)

Convex Optimization, Cambridge University Press.

Bertsekas (2009)

Convex Optimization Theory, Athena Scientific.

Rockafellar (1970)

Convex Analysis, Princeton, NJ: Princeton University Press.

Notation: Optimization program

A more common problem format:

$$\begin{array}{ll} \min_{x \in \mathcal{X}} & f_0(x) \\ \text{subject to:} & f_i(x) \leq 0 \quad i = 1, \dots, m \\ & h_i(x) = 0 \quad i = 1, \dots, p \end{array}$$

- Objective function $f_0 : \mathcal{X} \to \mathbb{R}$
- **Domain** $\mathcal{X} \subseteq \mathbb{R}^n$ of the objective function, from which the decision variable $x := (x_1; x_2; ...; x_n)$ must be chosen.
- Inequality constraint functions $f_i : \mathbb{R}^n \to \mathbb{R}$, for i = 1, ..., m
- Equality constraint functions $h_i : \mathbb{R}^n \to \mathbb{R}$, for $i = 1, \dots, p$

 \Rightarrow *Maximization* fit the framework with a change of sign.

Politecnico di Milano

イロト 不得 トイラト イラト 二日

Notation: Convex optimization program

• Standard form optimization problem:

$$\begin{array}{ll} \min_{x \in \mathcal{X}} & f_0(x) \\ \text{subject to:} & f_i(x) \leq 0 \quad i = 1, \dots, m \\ & h_i(x) = 0 \quad i = 1, \dots, p \end{array}$$

- Primal decision variables x
- For convex programs:
 - \mathcal{X} , f_0 , f_i 's convex, and $h_i(x) = a_i^\top x$ all affine
 - local = global optimum

Consider the following optimization program (no convexity assumption yet)

$$\begin{array}{ll} \min_{x \in \mathcal{X}} & f_0(x) \\ \text{subject to:} & f_i(x) \leq 0 \quad i = 1, \dots, m \\ & h_i(x) = 0 \quad i = 1, \dots, p \end{array}$$

- Assume we are interested in the optimal value p^* of (SDP)
- Can we construct a lower bound for p^{*}, i.e. d^{*} ≤ p^{*}, by solving another problem?
- This problem, called *dual*, might sometimes be easier to solve

To do this we first need some machinery - Duality Theory

< □ > < 同 > < 三 > < 三 >

The Lagrangian function

Recall our standard form (primal) optimization problem:

$$\begin{array}{ll} \min_{x \in \mathcal{X}} & f_0(x) \\ (\mathcal{P}): & \text{subject to:} & f_i(x) \leq 0 \quad i = 1 \dots m \\ & h_i(x) = 0 \quad i = 1 \dots p \end{array}$$

with (primal) decision variable x, domain \mathcal{X} and optimal value p^* .

Lagrangian Function: $L: \mathcal{X} \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

- λ_i : inequality Lagrange multiplier for $f_i(x) \leq 0$.
- ν_i : equality Lagrange multiplier for $h_i(x) = 0$.
- Lagrangian: weighted sum of the objective and constraint functions.

Politecnico di Milano

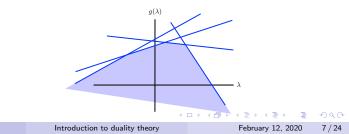
Lagrange dual function

The dual function $g : \mathbb{R}^m \times \mathbb{R}^p$ is

$$g(\lambda,\nu) = \inf_{x \in \mathcal{X}} L(x,\lambda,\nu)$$
$$= \inf_{x \in \mathcal{X}} \left[f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right]$$

The dual function $g(\lambda, \nu)$ is always a **concave** function.

g(λ, ν) is the pointwise infimum of affine functions
 Do you recall pointwise maximum?



Lagrange dual function

The dual function $g : \mathbb{R}^m \times \mathbb{R}^p$ is

$$g(\lambda,\nu) = \inf_{x \in \mathcal{X}} L(x,\lambda,\nu)$$
$$= \inf_{x \in \mathcal{X}} \left[f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right]$$

The dual function generates lower bounds for the primal optimal value, i.e. $g(\lambda, \nu) \leq p^*$ for $\lambda \geq 0$: **Proof**:

For any primal feasible solution \bar{x} : $\sum_{i=1}^{m} \lambda_i f_i(\bar{x}) + \sum_{i=1}^{p} \nu_i h_i(\bar{x}) \le 0$

$$\begin{split} g(\lambda,\nu) &= \inf_{x\in\mathcal{X}} L(x,\lambda,\nu) \leq L(\bar{x},\lambda,\nu) \leq f_0(\bar{x}) \text{ for all } \bar{x} \\ g(\lambda,\nu) &\leq \inf_{x\in\mathcal{X}} f_0(x) \leq p^* \end{split}$$

• $g(\lambda, \nu)$ might be $-\infty$; Non-trivial if dom $g := \{\lambda, \nu \mid g(\lambda, \nu) > -\infty\}$

The dual problem

Every $\nu \in \mathbb{R}^{p}$, $\lambda \geq 0$ produces a lower bound for p^{*} using the dual function. Which is the best?

$$(\mathcal{D}): egin{array}{c} \max & g(\lambda,
u) \ heta,
u \ heta \ hea \ heta \ heta \ heta \ heta \ he$$

- Problem (\mathcal{D}) is **convex**, even if (\mathcal{P}) is not.
- Problem (\mathcal{D}) has optimal value $d^* \leq p^*$.
- The point (λ, ν) is **dual feasible** if $\lambda \ge 0$ and $(\lambda, \nu) \in \operatorname{dom} g$.
- Often impose the constraint $(\lambda, \nu) \in \operatorname{dom} g$ explicitly in (\mathcal{D}) .

イロト 不得 トイラト イラト 一日

Example : Dual of LPs

$$(\mathcal{P}): \quad \begin{array}{l} \min_{x \in \mathbb{R}^n} c^\top x \\ \text{subject to:} \quad Ax = b \\ Cx \le d \end{array}$$

The dual function is

$$g(\lambda,\nu) = \min_{x \in \mathbb{R}^n} \left[c^\top x + \nu^\top (Ax - b) + \lambda^\top (Cx - d) \right]$$
$$= \min_{x \in \mathbb{R}^n} \left[(A^\top \nu + C^\top \lambda + c)^\top x - b^\top \nu - d^\top \lambda \right]$$
$$= \begin{cases} -b^\top \nu - d^\top \lambda & \text{if } A^\top \nu + C^\top \lambda + c = 0\\ -\infty & \text{otherwise} \end{cases}$$

Politecnico di Milano

February 12, 2020 10 / 24

2

A D N A B N A B N A B N

Example : Dual of LPs – (cont'd)

$$(\mathcal{P}): \quad \min_{\substack{x \in \mathbb{R}^n}} c^\top x$$

subject to: $Ax = b$
 $Cx \le d$

The dual problem is

$$(\mathcal{D}): \quad \max_{\lambda,
u} \quad -b^{\top}\nu - d^{\top}\lambda$$

subject to: $A^{\top}\nu + C^{\top}\lambda + c = 0$
 $\lambda \ge 0$

• Lower bound property:
$$-b^{\top}\nu - d^{\top}\lambda \leq p^*$$
 whenever $\lambda \geq 0$.

• The dual of a linear program is also a linear program.

Politecnico di Milano

э

< □ > < □ > < □ > < □ > < □ > < □ >

Example : Dual of a mixed-integer linear program (MILP)

$$(\mathcal{P}): \quad egin{array}{c} \min_{x \in \mathcal{X}} & c^{ op}x \ \mathrm{subject to:} & Ax \leq b \ & \mathcal{X} = \{-1, 1\}^n \end{array}$$

The **dual function** is

$$g(\lambda) = \min_{x_i \in \{-1,1\}} \left[c^\top x + \lambda^\top (Ax - b) \right]$$
$$= - \|A^\top \lambda + c\|_1 - b^\top \lambda$$

The dual problem is

$$(\mathcal{D}): egin{array}{ccc} \max_{\lambda} & -\|A^{ op}\lambda+c\|_1-b^{ op}\lambda\ & ext{subject to:} & \lambda\geq 0 \end{array}$$

The dual of a mixed-integer linear program is a linear program!

Politecnico di Milano

Introduction to duality theory

500

Weak and strong duality

Weak Duality

- It is **always** true that $d^* \leq p^*$.
- Sometimes the dual is much easier to solve than the primal (or vice-versa).
- Example: The dual of an MILP (difficult to solve) is a standard LP (easy to solve).

Strong Duality

- It is sometimes true that $d^* = p^*$.
- Strong duality usually holds for convex problems.
- Strong duality usually does not hold for non-convex problems.
- Can impose conditions on convex problems to guarantee that $d^* = p^*$.

3

< □ > < □ > < □ > < □ > < □ > < □ >

Strong duality for convex problems

An optimization problem with f_0 and all f_i convex:

$$\begin{array}{ll} \min & f_0(x) \\ (\mathcal{P}): & \text{subject to:} & f_i(x) \leq 0 \quad i = 1 \dots m \\ & Ax = b \quad A \in \mathbb{R}^{p \times n} \end{array}$$

Slater Condition

If there is at least one strictly feasible point, i.e.

$$\left\{x \mid Ax = b, f_i(x) < 0, \forall i \in \{1, \ldots, m\}\right\} \neq \emptyset$$

Then $p^* = d^*$.

- Stronger version: Only the nonlinear functions $f_i(x)$ must be strictly satisfiable (non-empty interior).
- Other constraint qualification conditions exist.

Politecnico di Milano

Duality – A geometric view

Assume one inequality constraint only:

$$\mathcal{G} := \{(u, t) \mid t = f_0(x), u = f_1(x), x \in \mathcal{X}\}$$
Primal problem:

$$p^* = \min \{t \mid (u, t) \in \mathcal{G}, u \leq 0\}$$
Dual function:

$$g(\lambda) = \min_{(u,t) \in \mathcal{G}} (t + \lambda u)$$
Dual problem:

$$d^* = \max_{\lambda \geq 0} g(\lambda)$$
The quantity $p^* - d^*$ is the **duality gap**.

Politecnico di Milano

Introduction to duality theory

+

Primal and dual solution properties

Assume that strong duality holds, with optimal solution x^* and (λ^*, ν^*) .

• From strong duality, $d^* = p^* \Rightarrow g(\lambda^*, \nu^*) = f_0(x^*).$

• From the definition of the dual function:

$$f_{0}(x^{*}) = g(\lambda^{*}, \nu^{*}) = \min_{x} \left\{ f_{0}(x) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x) + \sum_{i=1}^{p} \nu_{i}^{*} h_{i}(x) \right\}$$

$$\leq f_{0}(x^{*}) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x^{*}) + \sum_{i=1}^{p} \nu_{i}^{*} h_{i}(x^{*}) \leq f_{0}(x^{*})$$
[weak duality]
$$\implies f_{0}(x^{*}) = g(\lambda^{*}, \nu^{*}) = f_{0}(x^{*}) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x^{*}) + \sum_{i=1}^{p} \nu_{i}^{*} h_{i}(x^{*})$$

$$\implies \frac{\lambda_{i}^{*} = 0 \text{ for every } f_{i}(x^{*}) < 0.}{f_{i}(x^{*}) = 0 \text{ for every } \lambda_{i}^{*} > 0.} \right\} \text{ Complementary slackness}$$

Politecnico di Milano

February 12, 2020 16 / 24

Karush-Kuhn-Tucker (KKT) optimality conditions

Assume that all f_i and h_i are differentiable (no convexity assumption yet). Necessary conditions for optimality:

Primal Feasibility:

$$f_i(x^*) \le 0$$
 $i = 1, ..., m$
 $h_i(x^*) = 0$ $i = 1, ..., p$

Oual Feasibility:

$$\lambda^* \ge 0$$

Omplementary Slackness:

$$\lambda_i^* f_i(x^*) = 0 \quad i = 1, \dots, m$$

Stationarity:

$$\nabla_{x}L(x^{*},\lambda^{*},\nu^{*}) = \nabla f_{0}(x^{*}) + \sum_{i=1}^{m} \lambda_{i}^{*} \nabla f_{i}(x^{*}) + \sum_{i=1}^{p} \nu_{i}^{*} \nabla h_{i}(x^{*}) = 0$$

KKT optimality conditions – Convex Programs

Assume that all f_i and h_i are differentiable and problem is convex:

() If (x^*, λ^*, ν^*) satisfy the KKT conditions, then

- they are primal and dual optimal
- they result in zero duality gap, i.e. $p^* = d^*$

- If in addition Slater's condition holds, then
 - duality gap is zero and the dual optimum is attained (existence of (λ^*, ν^*) is guaranteed)
 - x^* is optimal **if and only if** there exist (λ^*, ν^*) that, together with x^* , satisfy the KKT conditions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Example : KKT optimality conditions for QPs

Consider a (convex) quadratic program with $Q \succeq 0$:

$$\begin{array}{rl} \min_{x \in \mathbb{R}^n} & \frac{1}{2} x^\top Q x + c^\top x \\ (\mathcal{P}): & \text{subject to:} & Ax = b \\ & x \ge 0 \end{array}$$

The Lagrangian is $L(x, \lambda, \nu) = \frac{1}{2}x^{\top}Qx + c^{\top}x + \nu^{\top}(Ax - b) - \lambda^{\top}x$. The KKT conditions are:

$$\begin{aligned} \nabla_x L(x,\lambda,\nu) &= Qx + A^\top \nu - \lambda + c = 0 & \text{[stationarity]} \\ Ax &= b & \text{[primal feasibility]} \\ x &\geq 0 & \text{[primal feasibility]} \\ \lambda &\geq 0 & \text{[dual feasibility]} \\ x_i\lambda_i &= 0, \quad i = 1 \dots n & \text{[complementarity]} \end{aligned}$$

19/24