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• Description of an approach to the design of variable 

structure controllers for output regulation of a linear system 

 

• Evaluation of the performance of the controller on a 

numerical example 

 

• Robustness of the control strategy with respect to 

parameter uncertainty 
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LATEST LECTURE 

System S: 

 

 

Key ingredients in the design of the controller: 

 the switching function 𝑠 𝑥 = 𝛽′𝑥 − 𝛾𝑦° with 𝛾 = 𝛽𝑛−1/𝑏𝑛 and 

𝛽′ = 𝛽𝑛−1  𝛽𝑛−2 …𝛽1 1  

LATEST LECTURE 



System S: 

 

 

Key ingredients in the design of the controller: 

 the switching function 𝑠 𝑥 = 𝛽′𝑥 − 𝛾𝑦° with 𝛾 = 𝛽𝑛−1/𝑏𝑛 and 

𝛽′ = 𝛽𝑛−1  𝛽𝑛−2 …𝛽1 1 , which defines: 

• the sliding surface 𝑠 𝑥 = 0   

• the a.s. characteristic polynomial of the (n-1)-

dimensional system S* governing the state evolution 

over the sliding surface:     

χ∗ 𝜆 = 𝜆𝑛−1 + 𝛽1𝜆
𝑛−1 +⋯+ 𝛽𝑛−1 

• the value 𝑦   for the system output at the equilibrium over 

the sliding surface: 𝑦  = 𝑦°  

 

LATEST LECTURE 

System S: 

 

 

Key ingredients in the design of the controller: 

 the switching function 𝑠 𝑥 = 𝛽′𝑥 − 𝛾𝑦° with 𝛾 = 𝛽𝑛−1/𝑏𝑛 and 

𝛽′ = 𝛽𝑛−1  𝛽𝑛−2 …𝛽1 1  

 the control input 

𝑢 = −𝛼′𝑥 + 𝑞 𝑠𝑔𝑛 𝛾𝑦° − 𝛽′𝑥 + r g 𝛾𝑦° − 𝛽′𝑥  

     with 𝑞 > 0, 𝑟 ≥ 0, 𝑠𝑔 𝑠 > 0, 𝛼′ = 𝛽′A, where A is the matrix    

     of S in controllable form 
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System S: 

 

 

Key ingredients in the design of the controller: 

 the switching function 𝑠 𝑥 = 𝛽′𝑥 − 𝛾𝑦° with 𝛾 = 𝛽𝑛−1/𝑏𝑛 and 

𝛽′ = 𝛽𝑛−1  𝛽𝑛−2 …𝛽1 1  

 the control input 

𝑢 = −𝛼′𝑥 + 𝑞 𝑠𝑔𝑛 𝛾𝑦° − 𝛽′𝑥 + r g 𝛾𝑦° − 𝛽′𝑥  

     with 𝑞 > 0, 𝑟 ≥ 0, 𝑠𝑔 𝑠 > 0, 𝛼′ = 𝛽′A, where A is the matrix    

     of S in controllable form, which makes system S reach the   

     sliding surface in finite time 𝑡𝑟 ≤ 𝑠 𝑥 0 /𝑞 

 

 

 

 

LATEST LECTURE 

Suppose that S is subject to some load disturbance 𝑤(𝑡) 

  

 

 

 

 

 

ROBUSTNESS W.R.T. LOAD DISTURBANCE 

𝑆  



Suppose that S is subject to some load disturbance 𝑤(𝑡) 

  

 

 

 

 

 

Statement:  

If 𝑤(𝑡) ≤ 𝑊 < 𝑞, ∀𝑡 , then: 

the state will reach the sliding surface 𝑠 𝑥 = 0 in finite time 

and will evolve according to the dynamics of S*.  

Only the time to convergence is affected by 𝑤   

ROBUSTNESS W.R.T. LOAD DISTURBANCE 

𝑆  

 

 

 

 

 

Sub-system 𝑆  

 has input 𝑣 + 𝑤 and output 𝑦  

ROBUSTNESS W.R.T. LOAD DISTURBANCE 

𝐴 = 𝐴 − 𝐵𝛼′ 

𝑆  

𝑆  

𝑆  



 

 

 

ROBUSTNESS W.R.T. LOAD DISTURBANCE 

𝐴 = 𝐴 − 𝐵𝛼′ 𝑆  
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ROBUSTNESS W.R.T. LOAD DISTURBANCE 

𝐴 = 𝐴 − 𝐵𝛼′ 𝑆  

 

 

 

ROBUSTNESS W.R.T. LOAD DISTURBANCE 

𝑆  



 

 

 

ROBUSTNESS W.R.T. LOAD DISTURBANCE 

System 𝑆 : 

- externally 𝑣 + 𝑤 → 𝑦  behaves like an integrator 

 

- has hidden dynamics with characteristic polynomial   

𝑆  

 

If  𝑤 = 0  

ROBUSTNESS W.R.T. LOAD DISTURBANCE 

𝑆  



 

If  𝑤 = 0  

ROBUSTNESS W.R.T. LOAD DISTURBANCE 

The (pseudo)-equilibrium  𝑦 = 𝛾𝑦° is reached in finite time. 

 

 

 

If  𝑤 = 0  

ROBUSTNESS W.R.T. LOAD DISTURBANCE 

The (pseudo)-equilibrium  𝑦 = 𝛾𝑦° is reached in finite time. 

 

If 𝑤(𝑡) ≤ 𝑊 < 𝑞, ∀𝑡,  then, the sign of the derivative of 𝑦  is preserved,  

so that 𝑦 = 𝛾𝑦° is still reached in finite time.  

The time to reach 𝑦 = 𝛾𝑦° will however depend on  𝑤. 
 



When 𝑦 = 𝛾𝑦°,  then,  

𝑦 = 𝛽′𝑥 = 𝛾𝑦° 

Thus, 𝑠 𝑥 = 𝛽′𝑥 − 𝛾𝑦° = 0 and  

 the system evolves on the sliding surface according to the 

dynamics of S*; 

 the output 𝑦  tends to 𝑦° 

 

 

 

 

ROBUSTNESS W.R.T. LOAD DISTURBANCE 

STATE NOT AVAILABLE: A NUMERICAL EXAMPLE 

𝐺 𝑠 =
−400(𝑠 + 5)

(𝑠2+5𝑠 + 20)(𝑠 + 10)(𝑠 − 1)

=
−400(𝑠 + 5)

𝑠4 + 14𝑠3 + 55𝑠2 + 130𝑠 − 200
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𝑠4 + 14𝑠3 + 55𝑠2 + 130𝑠 − 200
 

 

 

 

STATE NOT AVAILABLE: A NUMERICAL EXAMPLE 

Recall that the  coefficients of the switching function [n=4] 

 

appear in the characteristic polynomial of the linear system S* 

of order 3 governing the dynamics of S when restricted to the 

sliding surface 𝑠(𝑥) = 0: 

 

 

STATE NOT AVAILABLE: A NUMERICAL EXAMPLE 



Recall that the  coefficients of the switching function [n=4] 

 

appear in the characteristic polynomial of the linear system S* 

of order 3 governing the dynamics of S when restricted to the 

sliding surface 𝑠(𝑥) = 0: 

 

 

Set the eigenvalues of S* equal to those of S that are stable: 

then,    

 

So that 

STATE NOT AVAILABLE: A NUMERICAL EXAMPLE 

𝐺 𝑠 =
−400(𝑠 + 5)

𝑠4 + 14𝑠3 + 55𝑠2 + 130𝑠 − 200
 

 

Since the state is not directly measurable, we resort to the 

asymptotic state observer (Luenberger observer) and use 𝑥  in 

place of 𝑥 in the sliding mode control law:  

 

 
u = −′𝑥 + 𝑞 𝑠𝑔𝑛 𝛾𝑦° − 𝛽′𝑥 + 𝑟𝑔 𝛾𝑦° − 𝛽′𝑥  

STATE NOT AVAILABLE: A NUMERICAL EXAMPLE 



-s 

-s 

u = −′𝑥 + 𝑞 𝑠𝑔𝑛 𝛾𝑦° − 𝛽′𝑥 + 𝑟𝑔 𝛾𝑦° − 𝛽′𝑥  



ASYMPTOTIC OBSERVER 

+ 

+ 

+ 
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ASYMPTOTIC OBSERVER 

+ 

+ 

+ 

+ 
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- 



ASYMPTOTIC OBSERVER 

+ 

+ 

+ 

+ 

- 

observer gain 

DYNAMICS OF THE STATE ESTIMATION ERROR 



DYNAMICS OF THE STATE ESTIMATION ERROR 

ASYMPTOTIC OBSERVER 

 

 

  

 If (A,C) is observable, then, L can be designed so that  

A-LC has arbitrarily chosen eigenvalues and  

the estimation error converges exponentially to zero with 
rate 0 2 (0, mini |Re{i(A-LC)}|) 

Re 

Im 

o 

o 

o o 

eigenvalues of A-LC 



If we choose the eigenvalues -10, -8, -6, -5 for the observer 

dynamics, we get: 

𝐿 = [−0.0025 − 0.0250  0.0175  0.2550]′ 

and 0<0 <5 

 

 

 

 

 

STATE NOT AVAILABLE: A NUMERICAL EXAMPLE 

y° 𝑡 = 5𝑠𝑐𝑎 𝑡 − 2 , 𝑞 = 1, 𝑟 = 0 [𝐵𝑀𝐵/2 = 0.02,𝑀𝑀𝐵/2 = 1]  

𝑥 0 = 𝑥 0 = [0 0 0 0]′, 𝑦 0 = 𝑦 0 = 0 

 

 

 

 

 

 

 

 

y u 

STATE NOT AVAILABLE: A NUMERICAL EXAMPLE 



y° 𝑡 = 5𝑠𝑐𝑎 𝑡 − 2 , 𝑞 = 1, 𝑟 = 0 [𝐵𝑀𝐵/2 = 0.02,𝑀𝑀𝐵/2 = 1]  

𝑥 0 = 𝑥 0 = [0 0 0 0]′, 𝑦 0 = 𝑦 0 = 0 

 

 

 

 

 

 

 

 

y u 

Same behavior as without the observer since the estimation error 

is zero at time 0 and then keeps being zero.  

STATE NOT AVAILABLE: A NUMERICAL EXAMPLE 

y° 𝑡 = 5𝑠𝑐𝑎 𝑡 − 2 , 𝑞 = 1, 𝑟 = 0 [𝐵𝑀𝐵/2 = 0.02,𝑀𝑀𝐵/2 = 1]  

𝑥 0 = 0 0 0 0 ′, 𝑦 0 = 0;  𝑥 0 =  0.012 0 0 0 ′, 𝑦 0 = −24 
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STATE NOT AVAILABLE: A NUMERICAL EXAMPLE 



𝑦 − 𝑦  

y° 𝑡 = 5𝑠𝑐𝑎 𝑡 − 2 , 𝑞 = 1, 𝑟 = 0 [𝐵𝑀𝐵/2 = 0.02,𝑀𝑀𝐵/2 = 1]  

𝑥 0 = 0 0 0 0 ′, 𝑦 0 = 0;  𝑥 0 =  0.012 0 0 0 ′, 𝑦 0 = −24 

 

 

 

 

 

 

 

y u 

estimation error goes to 0 

in 1 time unit (𝜆𝑑 = −5). 
Then, same behavior  as  

when x(0) known  

s 
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STATE NOT AVAILABLE: A NUMERICAL EXAMPLE 



ISSUE OF THE HIGH FREQUENCY INPUT SWITCHING 

The high frequency switching of the control input in the sliding 

mode phase can be undesirable and even unacceptable.  

 

 

 

 

 

 

 

Possible solution:  

filtering the high frequency components of the control input by 

introducing an auxiliary control variable 𝑣 whose integral is the 

actual control variable 𝑢 

ISSUE OF THE HIGH FREQUENCY INPUT SWITCHING 



A NUMERICAL EXAMPLE 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 controllable and observable system (no pole-zero cancellations) 

A NUMERICAL EXAMPLE 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

enlarged controlled system  



A NUMERICAL EXAMPLE 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

enlarged controlled system  

 not in controllable form  

A NUMERICAL EXAMPLE 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 



A NUMERICAL EXAMPLE 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Dynamics within the sliding surface: 

 

 

 

 

 

 

In the original state variables:  

 

 

A NUMERICAL EXAMPLE 

y° 𝑡 = 5𝑠𝑐𝑎 𝑡 − 1 , 𝑞 = 10   𝑟 = 0[𝐵𝑀𝐵/2 = 0.02,𝑀𝑀𝐵/2 = 1]  

 

 

 

 

 

 

 



STABILIZATION OF DOUBLE INTEGRATOR 

System S: 

𝑥 1 = 𝑢 
𝑥 2 = 𝑣 
𝑥 3 = 𝑥1𝑣 − 𝑥2𝑢 

 

Goal:  design a feedback controller that globally asymptotically 

 stabilizes the origin  

 

 

STABILIZATION OF DOUBLE INTEGRATOR 

System S: 

𝑥 1 = 𝑢 
𝑥 2 = 𝑣 
𝑥 3 = 𝑥1𝑣 − 𝑥2𝑢 

 

Goal:  design a feedback controller that globally asymptotically 

 stabilizes the origin  

 

Difficult to stabilize even locally. Indeed, linearization in the 

vicinity of the origin gives a non-controllable system:  

𝑥 1 = 𝑢 
𝑥 2 = 𝑣 
𝑥 3 = 0 

If 𝑥1 and 𝑥2 are too close to zero, 𝑥3 cannot be steered to zero 



STABILIZATION OF DOUBLE INTEGRATOR 

System S: 

𝑥 1 = 𝑢 
𝑥 2 = 𝑣 
𝑥 3 = 𝑥1𝑣 − 𝑥2𝑢 

 

Goal:  design a feedback controller that globally asymptotically 

 stabilizes the origin  

 

We adopt a sliding mode approach 

STABILIZATION OF DOUBLE INTEGRATOR 

System S: 

𝑥 1 = 𝑢 
𝑥 2 = 𝑣 
𝑥 3 = 𝑥1𝑣 − 𝑥2𝑢 

 

Idea: make 𝑥3 converge faster to zero than 𝑥1 and 𝑥2 

Sliding mode control: 

𝑢 = −𝑥1 + 𝑥2𝑠𝑔𝑛 𝑥3  
𝑣 = −𝑥2 − 𝑥1𝑠𝑔𝑛 𝑥3  

[sliding surface 𝑥3=0] 

 

 

 

 



STABILIZATION OF DOUBLE INTEGRATOR 

System S: 

𝑥 1 = 𝑢 
𝑥 2 = 𝑣 
𝑥 3 = 𝑥1𝑣 − 𝑥2𝑢 

 

Idea: make 𝑥3 converge faster to zero than 𝑥1 and 𝑥2 

Sliding mode control: 

𝑢 = −𝑥1 + 𝑥2𝑠𝑔𝑛 𝑥3  
𝑣 = −𝑥2 − 𝑥1𝑠𝑔𝑛 𝑥3  

[sliding surface 𝑥3=0] 

 

We first show that there exists a set of initial conditions such 

that trajectories starting there converge to the origin. 

 

 

 

 

 

STABILIZATION OF DOUBLE INTEGRATOR 

System S: 

𝑥 1 = 𝑢 
𝑥 2 = 𝑣 
𝑥 3 = 𝑥1𝑣 − 𝑥2𝑢 

Sliding mode control: 

𝑢 = −𝑥1 + 𝑥2𝑠𝑔𝑛 𝑥3  
𝑣 = −𝑥2 − 𝑥1𝑠𝑔𝑛 𝑥3  

 

Control system:  

𝑥 1 = −𝑥1 + 𝑥2𝑠𝑔𝑛 𝑥3  
𝑥 2 = −𝑥2 − 𝑥1𝑠𝑔𝑛 𝑥3  
𝑥 3 = −(𝑥1

2+ 𝑥1
2)𝑠𝑔𝑛 𝑥3  

 

 

 

 

 

 



STABILIZATION OF DOUBLE INTEGRATOR 

Control system:  

𝑥 1 = −𝑥1 + 𝑥2𝑠𝑔𝑛 𝑥3  
𝑥 2 = −𝑥2 − 𝑥1𝑠𝑔𝑛 𝑥3  
𝑥 3 = −(𝑥1

2+ 𝑥1
2)𝑠𝑔𝑛 𝑥3  

 

Lyapunov function for the (𝑥1, 𝑥2) space 

𝑉 𝑥1, 𝑥2 =
1

2
(𝑥1

2 + 𝑥2
2) 

𝑑𝑉

𝑑𝑡
= 𝑥1𝑥1 + 𝑥2𝑥2 = − 𝑥1

2 + 𝑥2
2 = −2V 

𝑉 𝑡 = 𝑉 0 𝑒−2𝑡, 𝑡 ≥ 0 

 

 𝑥1, 𝑥2 tend to zero asymptotically 

STABILIZATION OF DOUBLE INTEGRATOR 

Control system:  

𝑥 1 = −𝑥1 + 𝑥2𝑠𝑔𝑛 𝑥3  
𝑥 2 = −𝑥2 − 𝑥1𝑠𝑔𝑛 𝑥3  
𝑥 3 = −(𝑥1

2+ 𝑥1
2)𝑠𝑔𝑛 𝑥3  

 

Lyapunov function for the (𝑥1, 𝑥2) space 

𝑉 𝑥1, 𝑥2 =
1

2
(𝑥1

2 + 𝑥2
2) 

 𝑥1, 𝑥2 tend to zero asymptotically 

 

As for 𝑥3: 

𝑥 3 = −(𝑥1
2+ 𝑥1

2)𝑠𝑔𝑛 𝑥3 = −2𝑉𝑠𝑔𝑛 𝑥3  



STABILIZATION OF DOUBLE INTEGRATOR 

As for 𝑥3: 

𝑥 3 = −(𝑥1
2+ 𝑥1

2)𝑠𝑔𝑛 𝑥3 = −2𝑉𝑠𝑔𝑛 𝑥3  

𝑑 𝑥3
𝑑𝑡

= 𝑥 3𝑠𝑔𝑛 𝑥3 = −2𝑉 

𝑥3(𝑡) − 𝑥3 0 = −2 𝑉 𝜏 𝑑𝜏
𝑡

0

 

𝑥3(𝑡) = 𝑥3 0 − 2 𝑉 𝜏 𝑑𝜏
𝑡

0

 

 If 𝑥3 0 < 2 𝑉 𝜏 𝑑𝜏, 
∞

0
then  𝑥3 tends to zero in finite time 

    If 𝑥3 0 = 2 𝑉 𝜏 𝑑𝜏, 
∞

0
then  𝑥3 tends to zero in infinite time 

 

 

 

 

STABILIZATION OF DOUBLE INTEGRATOR 

𝑉 𝑡 = 𝑉 0 𝑒−2𝑡 , 𝑡 ≥ 0 

Then, 2 𝑉 𝜏 𝑑𝜏 = 𝑉 0 =
1

2
(𝑥1

2(0) + 𝑥2
2(0)) 

∞

0
   

Hence:  𝑥3 0 ≤ 2 𝑉 𝜏 𝑑𝜏 
∞

0
 

becomes 

𝑥3 0 ≤
1

2
(𝑥1

2(0) + 𝑥2
2(0)) 

 

 

 



STABILIZATION OF DOUBLE INTEGRATOR 

If initial state satisfies 

𝑥3 0 ≤
1

2
𝑥1

2 0 + 𝑥2
2 0       (∗) 

then the sliding mode controller leads the state to the origin 

If the initial state doesn’t satisfy that condition, then, apply 

constant control to drive it in that region: 

𝑥 1 = 𝑢  
𝑥 2 = 𝑣  
𝑥 3 = 𝑥1𝑣 − 𝑥2𝑢  

 

𝑥1 𝑡 = 𝑢 𝑡 + 𝑥1 0  
𝑥2 𝑡 = 𝑣 𝑡 + 𝑥2(0) 
𝑥3 𝑡  = 𝑡 𝑣 𝑥1 0 − 𝑥2 0 𝑢 + 𝑥3 0  

Then equation (∗) will be satisfied at some finite time instant t. 

STABILIZATION OF DOUBLE INTEGRATOR 

If initial state satisfies 

𝑥3 0 ≤
1

2
(𝑥1

2(0) + 𝑥2
2(0)) 

then the sliding mode controller leads the state to the origin 

 

If the initial state satisfies 

𝑥3 0 >
1

2
(𝑥1

2(0) + 𝑥2
2(0)) 

then, apply constant control to drive it in the complementary 

region 

 

 Hybrid control scheme 

 

 


