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VARIABLE STRUCTURE CONTROL 

Control strategy where 

• a discontinuous feedback control law is designed that forces 

the state of the system to reach and then remain on a 

certain surface (the sliding surface);  

• the dynamic of the system restricted to the sliding surface 

should produce a desired behavior, e.g., convergence to 

some suitable equilibrium [stable sliding mode].  

 

It is also known as sliding mode control.  



EXAMPLE [S.V. Emelianov] 

S:   

𝑥 1 = 𝑥2                      
 𝑥 2 = −𝑥1 + 2𝑥2 + 𝑢 
𝑦 = 𝑥1                        

 

C:   𝑢 = −𝜓 𝑥 𝑦    

      where 𝜓 𝑥 =  
−4, 𝑠 𝑥 < 0
+4, 𝑠 𝑥 > 0

 ,   𝑠 𝑥 = 𝑥1(0.5𝑥1 + 𝑥2) 
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EXAMPLE 

• System  has a variable structure 

If 𝑠 𝑥 < 0 If 𝑠 𝑥 > 0 
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1 : (x) = - 4          2 : (x) = 4 

EXAMPLE 

1:   
𝑥 1 = 𝑥2            
 𝑥 2 = 3𝑥1 + 2𝑥2

                           2:   
𝑥 1 = 𝑥2                
 𝑥 2 = −5𝑥1 + 2𝑥2

 

 

• System  has a variable structure 

If 𝑠 𝑥 < 0 If 𝑠 𝑥 > 0 
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EXAMPLE 

1:   
𝑥 1 = 𝑥2            
 𝑥 2 = 3𝑥1 + 2𝑥2

                           2:   
𝑥 1 = 𝑥2                
 𝑥 2 = −5𝑥1 + 2𝑥2

 

  𝜒1 𝜆 = 𝜆2 − 2𝜆 − 3                              𝜒2 𝜆 = 𝜆2 − 2𝜆 + 5  
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1 : (x) = - 4          2 : (x) = 4 

• System  has a variable structure 

If 𝑠 𝑥 < 0 If 𝑠 𝑥 > 0 

• Both systems are unstable 

EXAMPLE 
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• System  has a variable structure 

If 𝑠 𝑥 < 0 If 𝑠 𝑥 > 0 



EXAMPLE 

𝑠 𝑥 > 0  2 

𝑠 𝑥 < 0  1 

𝑠 𝑥 < 0  1 

𝑠 𝑥 > 0  2 

switching 

surfaces 

EXAMPLE 

switching 

surfaces 
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EXAMPLE 

Across switching surface:   

the state reaches the surface S while following some  

dynamics, crosses it, and continues its evolution according to  

the other dynamics 

EXAMPLE 

Attractive switching surface:   

the state reaches the surface S and cannot leave it because  

the vector fields on both sides are pointing towards S 

 It can only slide along S (sliding mode) 
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After reaching the surface   

 

infinitely fast switching occurs (ideal sliding mode) and the 

state is constrained to evolve on that surface.  

S:  
𝑥 1 = 𝑥2                      
 𝑥 2 = −𝑥1 + 2𝑥2 + 𝑢 
𝑦 = 𝑥1                        

    &   𝑥2 = −0.5𝑥1 

 

 

𝑥 1 = −0.5 𝑥1 
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infinitely fast switching occurs (ideal sliding mode) and the 
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𝑦 = 𝑥1                        

    &   𝑥2 = −0.5𝑥1 

 

 

𝑥 1 = −0.5 𝑥1 

 

as. stable 

reduced order  

system 

EXAMPLE 

After reaching the surface   

 

infinitely fast switching occurs (ideal sliding mode) and the 

state is constrained to evolve on that surface.  

S:  
𝑥 1 = 𝑥2                      
 𝑥 2 = −𝑥1 + 2𝑥2 + 𝑢 
𝑦 = 𝑥1                        

    &   𝑥2 = −0.5𝑥1 

 

 

𝑥 1 = −0.5 𝑥1 

The origin x = 0 is a globally asymptotically stable (pseudo-) 

equilibrium for  

 



VARIABLE STRUCTURE CONTROL: THE BASICS 

Given a linear time-invariant SISO system S of order n 

S:  
𝑥 = 𝐴𝑥 + 𝐵𝑢        
𝑦 = 𝐶𝑥                    

 

with (A,B) controllable and (A,C) observable, design a variable 

structure controller such that 𝑦(𝑡) tends to some (constant) 

reference signal 𝑦° in some reasonable amount of time, for all 

𝑦°  and for all 𝑥 0 .  

Suppose that S is in the controllable canonical form: 
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VARIABLE STRUCTURE CONTROL: THE BASICS 

Suppose that S is in the controllable canonical form: 

 

 

 

 

Then, its transfer function is given by 

 

  

with 𝑏 𝑠  and 𝑎 𝑠  coprime since (A,C) is observable.  

For the output regulation problem to be well-posed 𝑏𝑛 ≠ 0 

since otherwise we shall have s = 0 as a zero for G 𝑠 .  
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VARIABLE STRUCTURE CONTROL: THE BASICS 

Design procedure:  

1. Determine a switching function 

 

 

such that S constrained on the sliding surface 𝑠 𝑥 = 0  
converges to a (pseudo-)equilibrium with y = 𝑦°.  
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trajectories starting from outside the sliding surface cross 

that surface in finite time [reaching condition]. 
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function:  

 

Then, the system dynamics on the sliding surface 𝑠 𝑥 = 0  is 

given by: 

 

 

 

This is an (n-1)-dimensional system in controllable canonical 

form, whose characteristic polynomial is 

CHOICE OF THE SWITCHING FUNCTION 

  
The roots of 

 

can be arbitrarily assigned by choosing its coefficients so as to 

match a polynomial with the desired roots. 

 

  



CHOICE OF THE SWITCHING FUNCTION 

  
The roots of 

 

can be arbitrarily assigned by choosing its coefficients so as to 

match a polynomial with the desired roots. 

 

If all roots have strictly negative real part (thus, β𝑛−1 ≠ 0), 

then, S* is asymptotically stable and admits a single 

equilibrium for each value for    
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Correspondingly,  

 

 

If we set      then  

VARIABLE STRUCTURE CONTROL: THE BASICS 
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Here we shall see one possible solution to the problem.  



REACHING CONDITION 

We shall adopt the so-called “reaching-law approach” to 

impose the reaching condition. 

 

 

REACHING-LAW APPROACH 

Specify the dynamics of the switching function 𝑠(𝑥 𝑡 ) so that 

the Lyapunov-like function  

𝑉 𝑠 =  
1

2
𝑠2, 

has negative time derivative satisfying  

𝑑𝑉

𝑑𝑡
= 𝑠𝑠 ≤ − 𝜂 𝑠 , 𝜂 > 0 

 

Statement:  

For any initial condition 𝑥(0), 𝑠 𝑥(𝑡)  converges to zero in finite 

time.   

 

 



REACHING-LAW APPROACH 

Proof [finite time convergence] 

Given that 𝑉 𝑠 =  
1

2
𝑠2,  
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𝑑𝑡
= 𝑠𝑠 ≤ − 𝜂 𝑠 = −𝜂 2𝑉 
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REACHING-LAW APPROACH 

Dynamics of the switching function: 

𝑠 = −𝑞 𝑠𝑔𝑛 𝑠 − 𝑟𝑔 𝑠  

with 𝑞 > 0 and 𝑟 ≥ 0, and 𝑔 .  such that 𝑠𝑔 𝑠 > 0 , ∀𝑠 ≠ 0. 

 

 
−𝑟𝑔 𝑠 > 0, 𝑠 < 0

−𝑟𝑔 𝑠 < 0, 𝑠 > 0
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The condition for finite time convergence to the switching 

surface is satisfied with 𝜂 = 𝑞: 

𝑑𝑉

𝑑𝑡
= 𝑠𝑠 = −𝑞 𝑠𝑔𝑛 𝑠 𝑠 − 𝑟𝑠𝑔 𝑠 = −𝑞 𝑠 − 𝑟𝑠𝑔 𝑠 ≤ −𝑞 𝑠  

The time to convergence satisfies  

𝑡𝑟 ≤
𝑠(𝑥(0))

𝑞
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g −s = −g s ;  α = 𝛽′𝐴 
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sgn function implemented as  

an hysteresis switching controller 

with M=1 and B  0 
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sgn function implemented as  

an hysteresis switching controller 

with M=1 and B  0 

infinitely fast switching  

is avoided 



A NUMERICAL EXAMPLE 

𝐺 𝑠 =
−400(𝑠 + 5)

(𝑠2+5𝑠 + 20)(𝑠 + 10)(𝑠 − 1)

=
−400(𝑠 + 5)

𝑠4 + 14𝑠3 + 55𝑠2 + 130𝑠 − 200
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A NUMERICAL EXAMPLE 

Recall that the  coefficients of the switching function [n=4] 

 

appear in the characteristic polynomial of the linear system S* 

of order 3 governing the dynamics of S when restricted to the 
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If we set the eigenvalues of S* equal to those stable of S 
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A NUMERICAL EXAMPLE 
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A NUMERICAL EXAMPLE 

y° 𝑡 = 5𝑠𝑐𝑎 𝑡 − 1 , 𝑞 = 1 [𝐵𝑀𝐵/2 = 0.02,𝑀𝑀𝐵/2 = 1] 

 

 

 

 

 

 

 

y u 

The system is initially on the sliding surface corresponding to  
𝑦° = 0, at the (quasi)-equilibrium with 𝑦 = 𝑦° = 0, and keeps  

sliding on it in the time interval [0,1). 

When 𝑦° = 5, we have a different sliding surface.  

The time needed for reaching it satisfies 𝑡𝑟 ≤
𝑠(𝑥(1))

𝑞
 

y° 𝑡 = 5𝑠𝑐𝑎 𝑡 − 1 , 𝑞 = 1 [𝐵𝑀𝐵/2 = 0.02,𝑀𝑀𝐵/2 = 1] 
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𝑠 𝑥 1

𝑞
= 0.5 
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• slower switchings 

• same duration of reaching phase 
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• smaller duration reaching phase 

• but larger amplitude of u excursions 
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How can one reduce the duration of the reaching phase, while 

do not affecting the u excursion? 

One can use an appropriate 𝑔 .  function. Take, e.g.,  

𝑔 𝑠 = s, s ∈ 𝑅;        𝑟 = 1 

A NUMERICAL EXAMPLE 



y° 𝑡 = 50𝑠𝑐𝑎 𝑡 − 1 , 𝑞 = 1 [𝐵𝑀𝐵/2 = 0.02,𝑀𝑀𝐵/2 = 1], 

𝑔 𝑠 = 𝑠, 𝑟 = 1  

 

 

 

 

 

𝑔 𝑠 = 0, 𝑟 = 0 

A NUMERICAL EXAMPLE 

y u 

y u 

We shall now evaluate: 

• impact of the choice of 𝜒∗ 𝜆  on the control law  

• robustness of the control strategy with respect to parameter 

uncertainty 

We shall fix 𝑟 = 0, for simplicity. 

A NUMERICAL EXAMPLE 



A NUMERICAL EXAMPLE 

Recall that the  coefficients of the switching function [n=4] 

 

appear in the characteristic polynomial of the linear system S* 

of order 3 governing the dynamics of S when restricted to the 

sliding surface 𝑠(𝑥) = 0: 

 

 

If we set the eigenvalues of S* all equal to -5 

 

then,    

 

So that 

A NUMERICAL EXAMPLE 

y° 𝑡 = 5𝑠𝑐𝑎 𝑡 − 1 , 𝑞 = 1 [𝐵𝑀𝐵/2 = 0.02,𝑀𝑀𝐵/2 = 1]  𝜆∗ = −5 

 

 

 

 

 

 

y° 𝑡 = 5𝑠𝑐𝑎 𝑡 − 1 , 𝑞 = 1 [𝐵𝑀𝐵/2 = 0.02,𝑀𝑀𝐵/2 = 1] 

 

y 

y 

u 

u 



𝐺 𝑠 =
−400(𝑠 + 5)

𝑠4 + 14𝑠3 + 55𝑠2 + 130𝑠 − 200
 

𝐺1 𝑠 =
−150(𝑠 + 10)

𝑠4 + 14𝑠3 + 55𝑠2 + 30𝑠 − 100
 

 

A NUMERICAL EXAMPLE 

A NUMERICAL EXAMPLE 

y° 𝑡 = 5𝑠𝑐𝑎 𝑡 − 1 , 𝑞 = 1, 𝜆∗ = −5, applied to 𝐺(𝑠) 

 

 

 

 

 

 

y° 𝑡 = 5𝑠𝑐𝑎 𝑡 − 1 , 𝑞 = 1, 𝜆∗ = −5, applied to 𝐺1(𝑠) 

 

y 

y 

u 

u 

not correct equilibrium 

since  is wrong 



A NUMERICAL EXAMPLE 

Scheme with adaptation of the gain : 


