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VARIABLE STRUCTURE CONTROL

Control strategy where

» adiscontinuous feedback control law is designed that forces
the state of the system to reach and then remain on a
certain surface (the sliding surface);

+ the dynamic of the system restricted to the sliding surface
should produce a desired behavior, e.g., convergence to
some suitable equilibrium [stable sliding mode].

It is also known as sliding mode control.




EXAMPLE [S.V. Emelianov]

X1 = Xz
S: {xz =—x;+2x,+u linear system
Y =X
C:u=—-yY)y switching controller
where Y (x) = {_4' s(x) <0 s(x) = x1(0.5x; + x3)
+4, s(x) >0’ IS T 22
EXAMPLE
Xy = X
S: {xz =—x;+2x,+u linear system
y=X1
C: u=—-yYx)y switching controller
(-4, s(x) <0 _
where Y(x) = {+4’ sG>0 s(x) = x1(0.5x1 + x3)

w() ||« X
v
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>: control system




EXAMPLE

» System X has a variable structure

Ifs(x) <0 Ifs(x)>0
(f—» -4 5SS y (T)—> 4 % s Y >
Xy iy(x)=-4 2o y(x) =4
EXAMPLE

+ System X has a variable structure

Ifs(x) <0 Ifs(x) >0
u y u y
(f—) -4 > S > (T)—> 4 S >
Sy =-4 S y(x) =4
z.{ﬁ:xz z_{fcl=x2
1 .‘7C2=3x1+2x2 2 .:X'Z :_5x1+2x2




EXAMPLE

» System X has a variable structure

Ifs(x) <0 Ifs(x) >0
T 4 15 s Y <T>» 4 55 s Y
2y iy =-4 2o y(x) =4
5 - X1 = X 5 X = X
1 {5(2=3x1+2x2 2 {562=—5x1+2x2
x1(D)=2%2-221-3 X2(A) =212 —=21+5
* Both systems are unstable
EXAMPLE
+ System X has a variable structure
Ifs(x) <0 Ifs(x) >0
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EXAMPLE

x=0 switching
s) =x(05x;+x)=0 < { surfaces
A
s(x) <02 %,
s(x)>0>2%,

s(x) >0>%, \

s(x)<0>%,

EXAMPLE

x=0 switching

s) =x(05x+x) =0 < { surfaces




EXAMPLE

>
EXAMPLE
X across
%, 2 itchin
—— Swi g

s<0 3=°\ surface
attractive / \ -
switching X,
surface

22 21




EXAMPLE

Across switching surface:

the state reaches the surface S while following some
dynamics, crosses it, and continues its evolution according to
the other dynamics

Attractive switching surface:

the state reaches the surface S and cannot leave it because
the vector fields on both sides are pointing towards S

—> It can only slide along S (sliding mode)




EXAMPLE

X, r across
2 — switching
$<0 $=°\ surface

attractive / \ -
switching X1
surface
22 21
)y
EXAMPLE
After reaching the surface
05x1+x=0

infinitely fast switching occurs (ideal sliding mode) and the
state is constrained to evolve on that surface.

)'Cl = X3
S: {xz =-x1+2x+u & x,=-05x

y=x1

)'Cl = _05 x1




EXAMPLE

After reaching the surface
05x+x,=0

infinitely fast switching occurs (ideal sliding mode) and the
state is constrained to evolve on that surface.

561 = Xy
S {xz = —x1 + 2x2 +u & Xy = —0.5x1

y=Xx1

© = 05 as. stable
1= U0 X reduced order

system
EXAMPLE

After reaching the surface
0.5 X1 + Xy = 0

infinitely fast switching occurs (ideal sliding mode) and the
state is constrained to evolve on that surface.

)'Cl = xZ
S: {xz =—x1+2x,+u & x,=-0.5x;

y=x1

5(1 = _05 x1

The origin x = 0 is a globally asymptotically stable (pseudo-)
equilibrium for X




VARIABLE STRUCTURE CONTROL: THE BASICS

Given a linear time-invariant SISO system S of order n

S {; : 24;6 + Bu

with (A,B) controllable and (A,C) observable, design a variable
structure controller such that y(t) tends to some (constant)
reference signal y° in some reasonable amount of time, for all

y° and for all x(0).

VARIABLE STRUCTURE CONTROL: THE BASICS

Suppose that S is in the controllable canonical form:

{ F() =Ax(f) + Bu(h)

S:
V(D) =Cx(h)
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VARIABLE STRUCTURE CONTROL: THE BASICS

Suppose that S is in the controllable canonical form:

X, =X, i=1.2.....nl1
X, =-a,X1 - A, X2 ...-a; X, T U
y:b,,,xl—bn,lxg—...—blxn.

VARIABLE STRUCTURE CONTROL: THE BASICS

Suppose that S is in the controllable canonical form:

X=X, i=1.2, ..., nl
Xy =-dyX| -y Xa-...-d] X, T U
y=bnx1—bn_1x2—...—blxn.

Then, its transfer function is given by

b(s)  bys" b s+ 4D,
a(s) s"+a, s +a, s+ . +a,

G(s)=

with b(s) and a(s) coprime since (A,C) is observable.

For the output regulation problem to be well-posed b,, # 0
since otherwise we shall have s = 0 as a zero for G(s).




VARIABLE STRUCTURE CONTROL: THE BASICS

Design procedure:
1. Determine a switching function
s() - R" - R

such that S constrained on the sliding surface s(x) = 0
converges to a (pseudo-)equilibrium with y = y°.

VARIABLE STRUCTURE CONTROL: THE BASICS

Design procedure:
1. Determine a switching function
s() : R" - R

such that S constrained on the sliding surface s(x) = 0
converges to a (pseudo-)equilibrium with y = y°.

2. Determine a control law u = k(x; y°) such that all the state
trajectories starting from outside the sliding surface cross
that surface in finite time [reaching condition].




VARIABLE STRUCTURE CONTROL: THE BASICS

Design procedure:
1. Determine a switching function
s() - R" - R

such that S constrained on the sliding surface s(x) = 0
converges to a (pseudo-)equilibrium with y = y°.

2. Determine a control law u = k(x; y°) such that all the state
trajectories starting from outside the sliding surface cross
that surface in finite time [reaching condition].

Here we shall see one possible solution to the problem.

VARIABLE STRUCTURE CONTROL: THE BASICS

Design procedure:
1. Determine a switching function
s() : R" - R

such that S constrained on the sliding surface s(x) = 0
converges to a (pseudo-)equilibrium with y = y°.




CHOICE OF THE SWITCHING FUNCTION

Typical choice (not only for linear systems) for the switching
function:

S() = Bua X1 P X T o Py T, - W,

CHOICE OF THE SWITCHING FUNCTION

Typical choice (not only for linear systems) for the switching
function:

S(X) = By X+ Baa Xy + o+ Prxg T, - W,
Then, the system dynamics on the sliding surface s(x) =0 is
given by:

J X=X i=1.2.....n-2
§*: ] 3
L ¥t =%, = - Bpa Xy - BpaXa = oo - Py Xy + 90




CHOICE OF THE SWITCHING FUNCTION

Typical choice (not only for linear systems) for the switching
function:

S() = Bua X1 P X T o Py T, - W,
Then, the system dynamics on the sliding surface s(x) =0 is
given by:

{ X=Xl . i=1,2.....n2
§*: ) 3
L X1 =X = - B X1 - PpaXo- - Pr X, .

This is an (n-1)-dimensional system in controllable canonical
form, whose characteristic polynomial is

¥ =T B AT+ L+ B

CHOICE OF THE SWITCHING FUNCTION

The roots of
LE) = 1B L+ B

can be arbitrarily assigned by choosing its coefficients so as to
match a polynomial with the desired roots.




CHOICE OF THE SWITCHING FUNCTION

The roots of
L*0) = 2"+ B L B

can be arbitrarily assigned by choosing its coefficients so as to
match a polynomial with the desired roots.

If all roots have strictly negative real part (thus, ,_1 # 0),
then, S* is asymptotically stable and admits a single
equilibrium for each value for w

CHOICE OF THE SWITCHING FUNCTION

X1 =W/Bp1: =0, i=2.3,...n1

is the only asymptotically stable equilibrium of

J X=X i=1.2.....n-2
§*: ] 3
L ¥t =%, = - Bpa Xy - BpaXa = oo - Py Xy + 90




CHOICE OF THE SWITCHING FUNCTION

X1 = WP : %=0. i=2.3... .01l

is the only asymptotically stable equilibrium of

{ Xi= X1 i=1,2.....n2
§*: ) 3
L X1 =X = - B X1 - PpaXo- - Pr X, .

Correspondingly,

%,=0.  F=CX=b,% =b/Buy

.0

If we set W =7v¥° v := Bu1/Dby then y=y

VARIABLE STRUCTURE CONTROL: THE BASICS

Design procedure:

2. Determine a control law u = k(x; y°) such that all the state
trajectories starting from outside the sliding surface cross

that surface in finite time [reaching condition].




REACHING CONDITION

We shall adopt the so-called “reaching-law approach” to
impose the reaching condition.

REACHING-LAW APPROACH

Specify the dynamics of the switching function s(x(t)) so that
the Lyapunov-like function

1 2
V(s) = ES ,
has negative time derivative satisfying
av .
E=ss$—n|sl, n>0

Statement:
For any initial condition x(0), s(x(t)) converges to zero in finite
time.




REACHING-LAW APPROACH

Proof [finite time convergence]

Given that V(s) = %sz,

dv
EZSS < —nls|=-nv2V

REACHING-LAW APPROACH

Proof [finite time convergence]

Given that V(s) = %52,
dv
—=s$§<—nls| =-nVv2V
dt

and, hence,

jtll dt<jt—ldt S JV(@® = V(0 < ——Lt
02V Ty 2 V2




REACHING-LAW APPROACH

Proof [finite time convergence]

Given that V(s) = %sz
av

E=s$‘£—n|s|=—n\/2V

and, hence,
J——dt f-—dt LV - m<__t

This can be rewritten as

1 n 1
—sx(t)| £ ——t+—|s(x(0
ﬁl(())l 7 ﬁl(())l

REACHING-LAW APPROACH

Proof [finite time convergence]

Given that V(s) = %52
dv
—=s$s<—nls|=-—mVv2V
dt

and, hence,

j——dt j——dt - V(@) - \/W<——t

This can be rewritten as

1
sG] < — =t +— IS(X(O))I

V2 V2. 2
and the time required to reach s = 0 is upper bounded by
Is(x(0))I

n




REACHING-LAW APPROACH

Dynamics of the switching function:

$=—qsgn(s) —rg(s)

with ¢ > 0 and r = 0, and g(.) such that

sg(s) >0

AN

,Vs # 0.

{—rg(s) >0, s<0
—rg(s) <0, s>0

REACHING-LAW APPROACH

Dynamics of the switching function:

§=—qsgn(s) —rg(s)

with ¢ > 0and r = 0, and g(.) such that

s

/\"'\q

sg(s) >0

N

,Vs # 0.

{—rg(s) >0, s<0
—-rg(s) <0, s>0

-




REACHING-LAW APPROACH
Dynamics of the switching function:

$=—qsgn(s) —rg(s)
with ¢ > 0and r = 0, and g(.) such that sg(s) > 0,Vs # 0.

The condition for finite time convergence to the switching

surface is satisfied with n = g:

dv
2 = 58 = —asgn(s)s —rsg(s) = —qls| —rsg(s) < —qls|
The time to convergence satisfies
s(x(0
L 5 )

REACHING-LAW APPROACH

§=—qsgn(s) —rg(s)

What is the control law that imposes this dynamics to s(t)?




REACHING-LAW APPROACH

§ =—qsgn(s) —rg(s)

What is the control law that imposes this dynamics to s(t)?

Recall the definition of the switching function s(x):
S(X) = Bp1Xy + PraXa o F Prapy T - W, W=yye 7= Bua/by

which can be rewritten in compact form as:

s()=p’x- yy° : B> =1[Bw1 PBna ... PBr 1].
s=Bx=p (dx+Bu).

REACHING-LAW APPROACH

s =qsgn(s) —rg(s

What is the control law that impoFes this dynamics to s(t)?

Recall the definition of the switching function s(x):

S(X) = B X1 + PaaXo + . F B g -w. W=y e v = Bt/b,.

which can be rewritten in compact form as:

s()=p’x- yy° . B =Br1 Baz .. B 1],

B (dx+Bu)=-qsgn(s(x)) - rgls(x))




REACHING-LAW APPROACH

B* (Adx +Bu)=-qsgn(sx))-rg(si))

0
0

0
B =[Bs1 Buz ... B 1] B=

w

— ['B=1

REACHING-LAW APPROACH

P* (dx +Bu)=-qsgn(sx)) - rglsx))

0

0

0
B =[Pu1 Bu2 ... P 1] B=

0

1

~

-

— > B’B=1

u=-(p Ax+qsgn(px-vy) +rgB x-7y°)




REACHING-LAW APPROACH

B* (Adx +Bu)=-qsgn(sx))-rg(si))
00
0

0
B> :=[Bu1 Bu2a ... B 1] B= — p'B=1

0
1

e -

u=- (B Ax+qsgn(px-vy)+rePx-vy)=

=-o’'x+qgsgn(yy*-px)+rgyy-px) .

g(=s) = —g(s); a = p'A

g() |l - —l
AN ‘\Oi[ sgn(-)\ = ¢ T S Y

u=-(p Ax+qsgn(p x-vy)+rg x-v1°) =

=-o'xTgsgn(yyo-px)trgyy-pa) .




sgn()| > ¢ s =
. x
(v
B
Vv
M
sgn function implemented as
— an hysteresis switching controller
' B2 with M=1 and B — 0
-M

infinitely fast switching
is avoided

sgn function implemented as
an hysteresis switching controller

-B/2 B/2 S

with M=1and B - 0




A NUMERICAL EXAMPLE

—400(s + 5)

(s24+5s5s +20)(s +10)(s — 1)
~400(s + 5)

T 5%t 1453 + 5552 + 1305 — 200

G(s) =

Axin (sec

Fragnary
|

A NUMERICAL EXAMPLE

—400(s + 5)

(s24+5s5+20)(s + 10)(s — 1)
~400(s + 5)

T 5% ¥ 1453 + 5552 + 1305 — 200

Fale-Zero Map

G(s) =




A NUMERICAL EXAMPLE

—400(s +5)
G(s) =— 3 2
s*+ 14s3 + 55s% + 130s — 200
{ x=Ax+Bu
y=Cx

0 1 0 0 0

0 0 1 0 0
4= B=

0 0 0 1 0

L 200 -130 -55 -14 ) 1

C=-[2000 400 0 0]

01:141 &'3:55, 03:130, 04:-200
bl=bg=0, 632-400, 1.7?4:-2000

A NUMERICAL EXAMPLE

Recall that the B coefficients of the switching function [n=4]
S() = By X1 F PaaXo T o F Py Xy T, - W,

appear in the characteristic polynomial of the linear system S*
of order 3 governing the dynamics of S when restricted to the
sliding surface s(x) = 0:

P*O) =1 B AT+ L+ B




A NUMERICAL EXAMPLE

Recall that the B coefficients of the switching function [n=4]
() 1= Ba Xy + BpaXy + o+ PrXp T X - WL w7y

appear in the characteristic polynomial of the linear system S*
of order 3 governing the dynamics of S when restricted to the
sliding surface s(x) = 0:

2H*O) =1 B AT L+ B

If we set the eigenvalues of S* equal to those stable of S
YEA) = (F + 50 +20)(0 + 10) =27+ 15 2% + 70 & + 200

then,
pr=I[Bs B B 1]=[200 70 15 1]

So that v=Ps/by=-0.1 @ =B 4=[200 70 15 1]

A NUMERICAL EXAMPLE

[ (G I | SN —l
_J"O “I; Sg”(.) L q u S —J)..

-B/2 B/2 e




A NUMERICAL EXAMPLE
yo(t) = SSca(t - 1),q =1 [BMB/Z = O'OZ'MMB/Z = 1]

4
3 f
2
1 / -1.5
7[
4 _
0 1 2 34 B 5 7 8 910 ] 1 2 3 4 5 5 7 8 g 10
t t

The system is initially on the sliding surface corresponding to
y° = 0, at the (quasi)-equilibrium with y = y° = 0, and keeps
sliding on it in the time interval [0,1).

When y° = 5, we have a different sliding surface.

The time needed for reaching it satisfies t, < —'S(xélm

A NUMERICAL EXAMPLE
yo(t) = SSca(t - 1),q =1 [BMB/Z = O'OZIMMB/Z = 1]

L G| _
q




A NUMERICAL EXAMPLE
yo(t) = SSca(t - 1),q =1 [BMB/Z = O'OZ'MMB/Z = 1]

oo ”

o] u

Lot -

L ‘

% 1/ 2 34 s 5 7 8 910 o 1 2 3 4 5 5 7 10
y°(¢t) = 5sca(t — 1),q = 1 [Byg,2 =MB/z =1]

B

El u

Lo

Lo

% 1/ AT T 0 1 2 3 4 5 & 7 & 9 10

A NUMERICAL EXAMPLE
y°(¢) = 5sca(t — 1),q = 1[Byp/2 = 0.02,Myp,, = 1]

Iy :

L] u

' / * slower switchings

I B T S S B S B R * same duration of reaching phase
y°(t) = 5sca(t —1),q =1 [Bms/2 =MB/2 = 1]

4 / u; -----

L] U




A NUMERICAL EXAMPLE
yo(t) = SSca(t - 1),q =1 [BMB/Z = O'OZ'MMB/Z = 1]

0 1 2 3 4 5 6 7 8 9 10

yo(t) = SSC(I(t - 1),q = 1 [BMB/Z = 0'1'MMB/2 = 1]
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A NUMERICAL EXAMPLE
y°(¢) = 50sca(t — 1),q = 1 [Byp/2 = 0.02,Myp,, = 1]

7 i

Lo - N w s




A NUMERICAL EXAMPLE

y°(t) = 50sca(t — 1),q = 1 [Byp/2 = 0.02,Myp,, = 1]

0 1 2 3 a 5 6 7 8 9 10 o 1 2 3 4 5 6 7

yo(t) = SOSca(t - 1)@[31\43/2 = 002, MMB/Z = 1]

A NUMERICAL EXAMPLE

yo(t) = SOSca(t - 1),q =1 [BMB/Z = 0.02, MMB/Z = 1]

y°(t) = 50sca(t — 1),q = 1 [Byp/z = 0.02, Myg, = 3]




A NUMERICAL EXAMPLE
yo(t) = SOSca(t - 1),q =1 [BMB/Z = O'OZ!MMB/Z = 1]

7

N

o

A NUMERICAL EXAMPLE
y°(¢) = 50sca(t — 1),q = 1 [Byp/2 = 0.02,Myp,, =

7

1]

T

||
smaller duration reaching phase
but larger amplitude of u excursions

y°(¢t) = 50sca(t — 1),q = 3 [Byp/2 = 0.02, Myp,, = 1]

7 10

8

=




A NUMERICAL EXAMPLE
yo(t) = SOSca(t - 1),q =1 [BMB/Z = O'OZ!MMB/Z = 1]

yo(t) = SOSCCL(t - 1),q = 3 [BMB/Z = 002, MMB/Z = 1]

A NUMERICAL EXAMPLE

How can one reduce the duration of the reaching phase, while

do not affecting the u excursion?

One can use an appropriate g(.) function. Take, e.g.,
g(s) =s, S ER; r=1

() | r —l
RARN AO—[ sgn()|F>  a “ S




A NUMERICAL EXAMPLE
yo(t) = SOSca(t - 1),q =1 [BMB/Z = O'OZIMMB/Z = 1],

gis)=sr=1
60
50 4
40 u 2
® . /
20 // ) /
10
o / 0 1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 (ﬁ 6 7 8 9 10 t
gis)=0r=0
60 7
50
40 ;
30 u °?
2
20
1
L]
-1

A NUMERICAL EXAMPLE

We shall now evaluate:

 impact of the choice of y*(1) on the control law

robustness of the control strategy with respect to parameter
uncertainty

We shall fix r = 0, for simplicity.




A NUMERICAL EXAMPLE

Recall that the B coefficients of the switching function [n=4]
S(X) = By X1 + BuaXy o T By Xy F X - WL WV

appear in the characteristic polynomial of the linear system S*
of order 3 governing the dynamics of S when restricted to the
sliding surface s(x) = 0:

2H*O) =1 B AT L+ B

If we set the eigenvalues of S* all equal to -5

R =(h+ 5P =3+ 1522+ 750 + 125
then,

p=1[Bs B> P1 1]=[125 75 15 1]
Sothat o’ :=p A=[200 -5 20 1] Y = Bs/by =-0.0625

A NUMERICAL EXAMPLE
yo(t) == SSca(t - 1),q - 1 [BMB/Z == O'OZIMMB/Z == 1] /1* - _5

2 T T T

15

o 1 2 3 4 5 6 7 8 9 10 ] 1 2 3 4 5 & 7 8 9 10
t t

yo(t) = SSca(t - 1),q =1 [BMB/Z = O'OZJMMB/Z = 1]

15

R R




A NUMERICAL EXAMPLE

6oy —400(s + 5)
$) = % ¥ 1453 + 5552 + 1305 — 200
>
Gl(s) = 4 3 2
s* + 14s® + 5552 +30s — 100>
i - P S Meoneemmnneennoceeee o] EYRR ]

A NUMERICAL EXAMPLE
y°(t) = 5sca(t —1),q = 1,A* = =5, applied to G(s)

2

15

2 3 4 5 & 7 8 9 10

y°(t) = 5sca(t —1),q = 1,A* = =5, applied to G;(s)
not correct equilibrium 2 o M S
since vy is wrong

L
¥




A NUMERICAL EXAMPLE

Scheme with adaptation of the gain y:

®Thlm<_<

&) | - —l
AO—[.sgn(-)ﬂ q . S

il




